

Linear guide systems

Linear guide systems

Summary

Heavy-Line	Guide rails GUM, GUMT
noavy =mo	Guide Rollers RKU
	Guide Wheels FKU
	Floating Guide Rollers RKUL
	Lubricator LUBU
	Guide pins SAG
	Guide rails GPMC
	Ground guide rails GPM
	Guide Rollers PK
	Guide Wheels FK
	Guide Rollers GC
	Cam followers FG (needle) and FGU (roller)
	Lubricator LUBP
Rolbloc	Guide rails GUM, GUMT
TODIOC	Carriages ROLBLOC BL
	Carriages BLDS discharge system
	Adjustment plates PR
	Wipers RPT
V-Line	Sand blasted guide rails FSMT
	Ground guide rails FSM
	Sand blasted guide rails FSHMT, FSXMT
	Ground guide rails FSHM, FSXM
	Guide Rollers FREU
	Guide Rollers FREU AS, FREU AZ
	Guide Rollers FRNEI
	Guide Rollers RKY, RKX
	Guide Rollers FKY, FKX
	Floating Guide Rollers FRLEU
	Floating Guide Rollers RKXL, RKYL
	Spacers FS and FSH
	Lubricator LUBY - LUBX

\bigcirc	20	
	21	
	22	
	23	For medium-heavy loads
	24	
T	25	
	28	
	29	
	30	Far madium bassu laada
	31	For medium-heavy loads Dirty environment
	32-33	Dirty Gilviloillicit
	34-35	
	36	
	41	
	42	For modium hoovy loods
	43	For medium-heavy loads Dirty environment
	44	Dirty environment
	45	
	48	
U	49	
	50	
	51	
M n	52	
100	53	
	54	For medium-heavy loads
(U)=	55	
	56	
	57	
(I)=	58	
	59	
	60-61	

Summary

Multi-Motion-Line	Circular rails FSRM
	Oval circuit FSRO
	Ring circuit FSRQ
	Carriages with fixed guide rollers T4R
	Steering carriages T4R
C-Line	Guide Rails LS
	Guide Rollers RCS
	Guide Rollers RAS
	Guide Rollers RCN
	Guide Rollers RAN
	Carriages C3 RCS, C3 RAS, C3 RYS
	Carriages C4 RCS, C4 RAS, C4 RYS
	Carriages C5 RCS, C5 RAS, C5 RYS
	Carriages C3 RCN, C3 RAN, C3 RYN
	Carriages C4 RCN, C4 RAN, C4 RYN
	Carriages C5 RCN, C5 RAN, C5 RYN
	Carriages C6 RCN, C6 RAN, C6 RYN
Base-Line	Guide rails DC
	Guide rails C
	Guide Rollers PFV
	Guide Rollers RKO
	Carriages T4PFV
	Wipers NAID
	Lubricator LUBC
	Guide rails FWS
	Guide rails FWH
	Guide Rollers FREU
	Guide Rollers FREU AS, FREU AZ

	67	
	69	
	70	For all applications
	71	
	72	
	82	
()m	83	
	84	
	85	
	86	
	87	For light-medium loads
	88	For light-inection loads
	89	
	90	
	91	
	92	
	93	
	97	
	98	
	99	For medium loads
	100	Aggressive environment
	101	
	102	
	103	
	106	
<u> </u>	107	For light-medium loads
	108	
₩	109	

Summary

Base-Line	Floating Guide Rollers FRLEU						
	Carriages T4FR						
Flexi-Line 645	Guide rails FWN						
	Carriages TA4, TB4						
U-Line	Guide rails LM						
	Guide Rollers RCL, RCP, PFV						
	Floating Guide Rollers RAL						
	Guide Wheels GLA						
	Carriages C3RCL, C3RAL, C3RYL						
	Carriages C4RCL, C4RAL, C4RYL						
	Carriages T4RCL, T4RCP, T4PFV, T4RAL, T4RYL						
	Lubricator LUBM						
	Guide rails LML 20						
	Carriages C3RCL 16 NX, C4RCL 16 NX						

	110	For light-medium loads					
	111	Tor light-inediam loads					
5 0	115	For light modium loods					
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	116-117	For light-medium loads					
	122						
	123						
	124						
	125	For light-medium loads					
	126						
	126	For light-medium loads					
	127						
0	127						
	129						
000000	129						

Nadella linear systems

With this line of products, NADELLA confirms the aim to provide manufacturing solutions tailored to the user's needs in order to achieve simple automation at a low cost.

The process under way of transferring production automation and relevant handling onto increasingly heavier and cumbersome units has prompted us to seek original and flexible components for the different commodity sectors.

We have accumulated sound working experience in the following sectors:

- marble-working machinery
- foundry machinery
- metal sheet working machinery
- special lifting machines
- pick up
- automatic warehouses
- textile machines
- machine tool protections and utilities
- oxygen cutting machines

Our Technical Department works with Customers and recommends the best component choice by making the calculations needed to determine the best life.

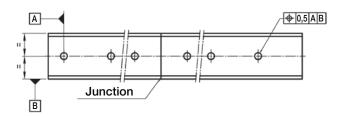
Guides

Length

The maximum length of each single guide component is shown on the dimensional tables.

The standard lengths of the rails are determined by adding the product of the fixing hole centre distance and the number of holes to twice the end dimension (see dimensional tables).

Length	≥ 150 < 420	≥ 420 < 1.050	≥ 1.050 < 2.040	≥ 2.040 < 4.020	≥ 4.020
Length tolerance	± 0,5	± 0,8	± 1,2	± 2	± 2,5


Joints

For strokes of greater length, the guide components can be joined after grinding the end faces (suffix R or RR). To maintain the hole centre distance tolerance, when ordering always specify the number of individual rails making one continuous length.

Please specify in the order when rails have to be matched. The junctions are marked (letters and numbers) to avoid a mix-up of different rails.

Fixing holes

The guides are available with standard holes, as shown in dimensional tables, with special hole layout or without holes (see order code referencing) Standard tolerance for hole position is \pm 0,25 mm.

The standard boring layout is designed to fit most common application requirements, but connection strength has to be evaluated on the application case.

Steel guides

General

Steel rails are made of bearing steel to give best stability and durability. Raceways are induction hardened to achieve 58 HRC hardness minimum. The rail core remains soft to allow easy machining.

Rails can be provided with different finishes to meet specific application requirements.

Guide rails MT type. Profile is produced by cold drawing process, raceways are induction hardened and sandblasted to improve surface strength and finish.

Guide rails M type. Profile is usually produced by cold drawing process, induction hardened on raceways and ground to improve surface finish and profile geometry and to remove the partially decarburised surface (0.1 mm max on cold drawn rails ..MT). Ground rails have to be used when there are high loads, heavy-duty cycles or when there is a high accuracy requirement.

Guide rails MC type (flat rail GP..MC only). MC rails are induction-hardened on every side and finished by-arough grinding.

Options

Corrosion protection

For use in oxidising environments or in the presence of corrosive agents, the guides are available with chemical nickel-plating protective anticorrosion treatment (suffix NW). This treatment features substantial mechanical characteristics together with a resistance to salty mist corrosion superior to that of hard chrome. On request many rails are available in stainless-steel version (suffix NX). On request can be supplied rails with different surface treatment, as chrome plating and phosphating. Rails LS are supplied with a standard surface treatment of zinc plating (suffix GZ). A wide range of stainless steel rails is available (suffix NX).

Circular rail

On request circular rails can be provided. Circular rails can be used as an alternative to rotating devices or as junction between straight rails.

Technical features

Standard rail straightness (for non-mounted rails) is 0.5 mm/m max. Higher accuracy can be supplied on request.

Temperature

Standard operating temperature range is -20°C up to 150°C. In lower or higher temperature applications please contact Nadella Technical Service. Special care is required if guide rollers are operating at maximum temperature.

Aluminium guides

General

Made by joining an aluminium alloy support element and hardened steel rods that form the sliding surfaces.

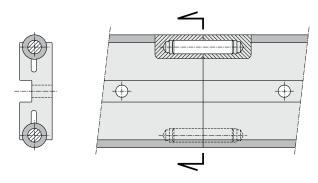
The best features of the two materials and relevant working technologies are combined to give the lightness of the alloy and the hardness and surface finish of the rods

Guides of this type can be used for structural functions; they have a high moment of inertia that enables them to be used in many applications as carrying structures. Aluminium extruded profiles are stabilised and anodised. Sliding rods are induction hardened and ground.

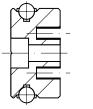
Options

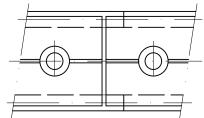
Corrosion protection

For use in oxidising environments or in the presence of corrosive agents, the guides of this series can feature stainless-steel bars (suffix NX).


Chromium-plated rods

Optional chromium-plated rods are available (suffix CH); the thickness of the chromium plating is 10 \pm 5 μ m with hardness \geq 800 HV.


Please check option availability in dimensional tables.


Joints

In case rail made by multiple C-DC or LM rails the most efficient joint can be realized with the insertion of a dowel pin inside the rods. This solution allows for simple assembly at the site and maintains alignment under load.

For rails FWS the joint can be realised by protruding the rods of one rail in order to engage them in the profile of the next rail. In the final configuration there will be a small gap between the aluminium profiles (see next drawing).

Technical features

Standard rails straightness (for non mounted rails) is 0.5 mm/m maximum. Higher accuracy can be supplied on request.

Temperature

Standard operating temperature range is -20°C up to 70°C. Applications with frequent temperature variation should be avoided. For operating conditions outside the given range please contact Nadella Technical Service.

Guide rollers

General

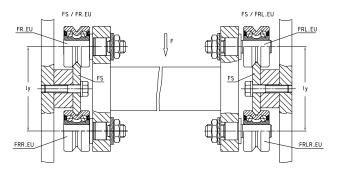
Nadella provide a wide range of guide rollers to be able to meet different technical and economic requirements. All guide rollers are produced in concentric and eccentric versions to allow backlash adjustment during assembly on final equipment. Eccentric rollers are identified by additional R in the code.

The sides of the races of the guide roller are slightly convex. Besides reducing rolling friction, this also permits offsetting slight guide flexing or small assembly alignment errors.

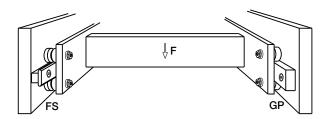
Guide rollers are fitted with seals or shields for bearing protection and lubricant retention as described in dimensional tables.

Guide rollers based on **needle or tapered roller bearings** (FRN..EI,RK..,PK..) are recommended for critical applications with heavy axial loads and/or shock loading. Guide rollers based on **ball bearings** (FR..EU, PFV, RCL) are more suitable for lighter loads or high dynamic systems.

The carriages based on Rolbloc's system are recommended for applications with heavy loads, high frequency of work and aggressive environment (dust, abrasive).


When mounting guide rails opposite to each other with connected carriages, as shown in the next sketch, a high level of parallelism between the guide rails is required when axially rigid rollers are used.

To avoid operating problems it is recommended to use axial rigid fixed rollers on one carriage e.g. FR.. EU/FRR...EU and axial movable rollers on the other



carriage e.g. FRL..EU/FRLR..EU

Movable rollers allow a little misalignment between the opposite mounted guide rails.

Another solution is to use one profiled guide rail e.g. FS and on the opposite side a flat rail e.g. GP in connection with rollers GC or PK.

Technical features

Lubrication

Guide roller FRN..El permits bearing relubrication. All other guide rollers are long life lubricated.

Temperature

Guide roller should not operate at constant temperature above 80°C. For short durations 100°C can be accepted. For higher temperature please see the "option section".

Speed limit

Max velocity has to be determined for each application relevant to the guide roller type, size and load conditions. As general value, in normal conditions maximum speed is 4 m/sec but, with the correct chose of the components, the speed can reach 10 m/s. Contact Nadella Technical service in case of specific request.

Options

Corrosion protection

For uses in oxidising environments or in the presence of corrosive agents, the guide rollers are available in stainless steel (suffix NX) the guide rollers with tapered rollers (RKU, RKY/X, FKU, FKY/X) and needles (FRN) are equipped with standard bearings. Check in the dimensional table component availability.

High temperature

On request guide rollers can be equipped with Viton seals to operate at temperature up to 120° (suffix V). Check in the dimensional table component availability.

Accessories

Tables and carriages

Standard table and carriages for C-DC and LM systems incorporate a black anodised aluminium plate fitted with guide rollers.

Wipers

Standard wipers NAID for C-DC rails are made from NBR compound moulded on a steel plate.

Lubricators

Are composed by two main parts: a plastic box with the same shape profile of the rail, and a lubricated felt; the felt is slightly pressed on the raceways by a spring. The plastic box, that drags the raceways, works as a wiper, and remove dust and shavings.

The plastic box can be mounted directly on the guide rollers plate by the appropriate aluminium plate included in the kit.

In the lubricators for guide rollers size 52 or higher, the grease nipple allows an easy connection with a relubrication system.

For the simply lubrication of the rails you can use one lubricator only on each raceway; in order to wipe the raceways it is better to mount two lubricators, before and after the carriage.

The lubricators are supplied with the felt already lubricated.

Use in dirty environment

Due to the design cam rollers with profile are especially adapted to the use in rough and dirty environment. This properly has proved true in many applications such as welding plants, steel and grinding machines and is superior to recirculating ball bearing guides in continuous operation.

Lubrication

Bearing Iubrication

All the guide rollers, except for the FRN..EI, based on needle bearings, are equipped with long life lubricated bearings. This means that the grease inside the bearing is enough for the entire life of the roller guide. The roller guide type FRN..EI, with needle bearings, accommodates the re-lubrication of the bearings.

Rail lubrication

Rails must be lubricated. This allows reducing the friction, to reach the calculated lifetime of the system and to work at high speed.

No or insufficient lubrication will cause rapid deterioration. The typical signal of tribocorrosion is the presence of a red/dark oxide and rapid wearing of the rail and guide rollers.

The lubrication of the rail, the working environment and the load must be considered all together for a correct estimation of the lifetime of the guide system.

Generally speaking, for application with low duty frequency, a periodic relubrication with a grease or with a viscous oil will sufficiently maintain the lubrication film. The re-lubrication interval depends on the application and must always be tested in the real working conditions. In a system with ground rails and short stroke without lubricators, you can consider a relubrication interval every 100,000 cycles. Increasing the load, speed or stroke, or using an under sized bearing will increase lubrication demand and result in a shorter lubrication interval. For a constant lubrication we suggest the use of felt lubricators to ensure a constant layer of lubricant between guide rollers and raceways. Felt lubricators enlarge the lubrication interval more than ten times.

The recommended lubricants are greases and oil for bearings, linear rails or chains, with a high viscosity of the basic oil and with EP additives, in order to separate the metallic surfaces even with low speed.

Assembly instructions

Guide rollers

The eccentric guide rollers allows the preload or clearance of the carriage to be adjusted independently of the guide roller mounting hole positioning tolerance or the distance between the rails.

Recommended mounting hole tolerance is H7.

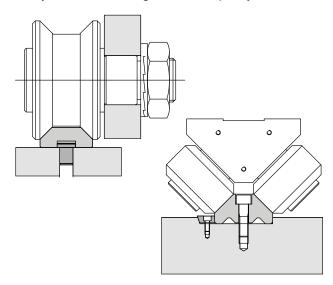
When adjusting the eccentric guide roller care has to be taken to avoid excessive preload. Excessive preload can reduce the life of the linear system.

Set the preload turning the guide roller counterclockwise

so that any movement caused by vibration will cause the nut to be tightened. Ensure the preload is not increased when tightening the nut.

A simple way of setting a roller preload is as follows:

- 1 move the slider on the guide, holding the roller being adjusted with two fingers to prevent it from rotating
- 2 increase the preload by means of the wrench
- 3 repeat step 1 making sure the roller slides without rolling
- 4 when it is no longer possible to prevent roller rolling, slightly decrease the preload and fully tighten the lock nut, thereby setting the position of the eccentric.


When correctly adjusted it is just possible to cause the guide roller to slip on the guide rail when a torque is applied to the roller.

Guides

For single guide rail type FS, FWS, LS, DC, FWN and LM no special assembly instructions are necessary. For multiple parallel rails parallelism has to be checked to avoid guide rollers overload or excessive carriage play. When constant preload is required parallelism error has to be lower that 0.050 mm.

Connection between the rail and the mounting surface has to be designed accordingly with the operating condition to ensure proper product positioning and functionality.

The direction and intensity of the load, the number and strength of the screws, the geometry of mounting surfaces, use of pins or wedges have to be evaluated to fully utilize the linear guide load capacity.

Carriages

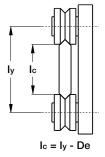
Carriages are supplied with concentric guide rollers nut tighten already. Eccentric guide rollers have to be set and tighten during final assembly operation by customer.

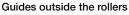
Calculation procedure

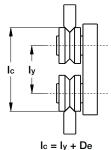
Calculation is carried out in two steps, first defining the forces on the most heavily loaded roller and then estimating the safety factors and life.

Calculating the loads on the guide rollers

In the case of complex load situations, with forces acting in different directions, calculating the reactions on the rollers is difficult and hard to simplify.

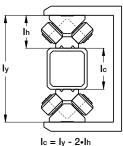

In the event of the applied load having a direction parallel to one of the co-ordinate axes, the radial Pr and axial Pa components of the reactions on the most loaded roller can be obtained using elementary formulas.

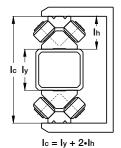

With reference to the diagrams shown, we obtain the load components on the rollers relevant for checking and calculating the life, applying the following methods.


Angle α in the formulas is half the groove angle. Look in the dimensional table notes for the correct value.

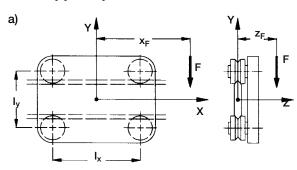
Distance $I_{\rm C}$ is the effective contact distance. With the exception of ROLBLOC system the correct value is calculated as the guide rollers centre distance across the rail plus or minus the outer guide roller diameter De, depending if the guide is outside or between the rollers.

Guide between the rollers

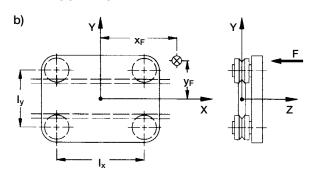




In case of ROLBLOC the distance I_C is the distance between the rails basis.

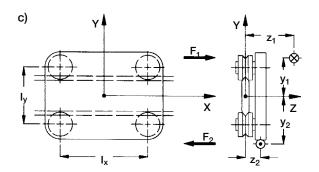

Guides between the rollers

Guides outside the rollers


Diagram a) load F applied parallel to axis Y

$$Pa = \frac{F \cdot z_F}{2 \cdot I_C}$$

$$Pr = \frac{F \cdot (I_X + 2 \cdot x_F)}{2 \cdot I_X} + \frac{F \cdot z_F \cdot \tan \alpha}{2 \cdot I_C}$$


Diagram b) load F applied parallel to axis Z

$$Pa = \frac{F}{4} + \frac{F \cdot x_F}{2 \cdot I_X} + \frac{F \cdot y_F}{2 \cdot I_C}$$

$$Pr = Pa \cdot \tan \alpha$$

Diagram c) load F applied parallel to axis X

In this case the external load F₁, applied at the point of co-ordinate y₁ z₁, should be considered together with reaction $F_2 = -F_1$, applied at the point of co-ordinate y_2 z_2 . Calling Δy the absolute value of y_2 - y_1 and Δz the absolute value of z2-z1, the following formula is used:

$$Pa = \frac{F_1 \cdot \Delta z}{2 \cdot I_X}$$

$$Pr = \frac{F_1}{I_x} \cdot \left(\frac{\Delta z \tan \alpha}{2} + \Delta y\right)$$

Guide roller calculation

In the table for each roller the following data is specified:

C_w basic dynamic load, it is the radial load [N] that applied to the guide roller gives 100 km nominal life*.

F_r limit radial load, it is the maximum radial load [N] that can be applied on the guide roller; for the guide wheels is the limit radial load of the wheel.

Fa limit axial load, it is the maximum axial load [N] that can be applied on the guide roller; for the guide wheels is the limit axial load of the wheel.

X and Y coefficients to define the equivalent load for bearing life.

 $\boldsymbol{\alpha}$ is the contact angle dependent on the guide roller type.

Rollers FRN..El work as combined bearings, the basic dynamic load is defined as:

Cwr basic radial dynamic load, it is the radial load [N] that applied to the guide roller gives 100 km nominal life*.

Cwa basic axial dynamic load, it is the axial load [N] that applied to the guide roller gives 100 km nominal life*.

Note*: ISO 281 states 'the nominal life will be exceeded by 90% of bearings before the first sign of material fatigue'.

Nominal life calculation

System life is the minimum life of either the bearings in the guide roller or the rail/roller contact surfaces.

For the rail/roller surface see the lubrication paragraph. For the bearings life proceed as follows.

The loads Pr and Pa are calculated for ideal condition. However, in practice, because of the structure and operating conditions a better calculation and life estimation is performed using overload factor fw as

1.0 - 1.2 smooth operation at low speed at constant load without shocks

1.2 - 1.5smooth operation with load variation

1.5 – 2.0 operation with small shocks and vibrations

2.0 ~ 4.0 high acceleration, shocks and vibrations

Once Pa and Pr has been defined we can proceed to calculate the equivalent load Peq (not for FRN..El).

$$P_{eq} = X P_r + Y P_a$$
 [N]

Coefficients X and Y can be obtained from guide rollers tables.

In case of pure radial guide roller as PK and GC or floating bearings FRL, RAL, RKXL, RKUL.

$$P_{eq} = P_r$$
 [N]

Nominal bearing life:

$$L_{10} = 100 \left(\frac{C_{W}}{P_{eq} \cdot f_{W}} \right)^{p}$$
 [km]

Where coefficient p is:

p = 3 for ball bearing guide rollers (FR..EU, RCL... PFV..., RAL, MBL)

p = 10/3 for roller bearing guide rollers (PK.., RKY, RKX, ROLBLOC, GC, FRL..)

In case of guide rollers based on needle bearings type FRN..EI nominal bearing life is calculated as the minimum between:

$$L_{10} = 100 \left(\frac{C_{Wr}}{P_r \cdot f_W} \right)^{10/3}$$
 [km]

$$L_{10} = 100 \left(\frac{C_{\text{Wa}}}{P_{\text{a}} \bullet f_{\text{W}}} \right)^{10/3}$$
 [km]

Checking the guide roller max load

The values of the radial limit loads Fr and axial limit loads Fa shown in the catalogue refer to extreme operating conditions, meaning:

 $\begin{aligned} &P_a = 0 \quad \text{(pure radial load)} \\ &P_r = P_a \; \text{tan} \; \alpha \; \text{(maximum axial load)} \end{aligned}$

In intermediate cases, when the ratio is included between the extreme values, the equivalent limit load F_k to be considered must be calculated according to ratio $k = P_a/P_r$.

$$F_{k} = \frac{F_{r} \bullet F_{a}}{k \bullet F_{r} + (1 - k \tan \alpha) \bullet F_{a}} [N]$$

To check the strength of the guide roller, in relation to the limit load, the safety factor has to be greater than 1

Fk/Pr > 1

Note: in the following common cases it is not necessary to calculate F_k and the evaluation can be completed easily. Rollers that allow axial movement (FRL, PK, RKYL, RKUL, GC) don't support axial loads.

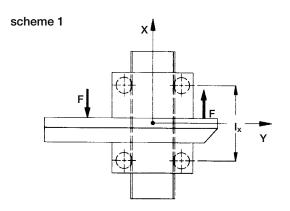
In case of loads acting in the guide roller plane (F_x or F_y acting with Z=0) the axial load is also zero (0) (see calculation example n° 3).

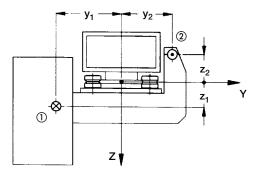
In these cases it has to be

$$F_r/P_r > 1$$

In case of load F_z acting perpendicular at guide roller plane the axial load is maximum (example n° 4).

$$F_a/P_a > 1$$


Examples of calculation


1) A fork-lift truck featuring vertical movement (scheme 1).

The resulting magnitude of the weight passes through point 1, while the vertical force that balances this, for instance the traction of a timing belt, passes through point 2.

Guide rollers type RKY 52 are used with guide rail type FS 62 MT $\,$

overload factor
$$f_W=1,0$$
 center distance $I_X=300$ mm $I_y=144,3$ mm $F=1800$ N $z_1=100$ mm $y_1=-150$ mm $z_2=-250$ mm $y_2=350$ mm $\Delta_z=350$ mm

Load on rollers

$$P_{a} = \frac{1800 \cdot 350}{2 \cdot 300} = 1050 \text{ N}$$

$$P_{r} = \frac{1800}{300} \cdot \left(\frac{350 \tan 40}{2} + 500\right) = 3881 \text{ N}$$

Nominal life

$$X = 1$$
 $Y = 3,38$

Equivalent dynamic load

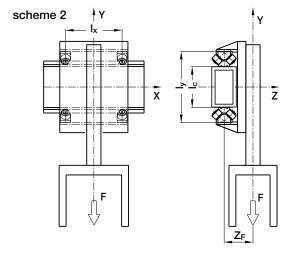
$$P_{eq} = 1 \cdot 3881 + 3.7 \cdot 1050 = 7430 N$$

$$L_{10} = 100 \quad \left(\frac{40750}{7430 \cdot 1}\right)^{10/3} = 29093 \text{ km}$$

Limit load check

Equivalent limit load Fk K=Pa/Pr=0,27

$$F_{k} = \frac{11900 \cdot 4250}{0.27 \cdot 11900 + (1 - 0.27 \tan 40) \cdot 4250} = 7780 \text{ N}$$


Guide roller safety coefficient

$$F_k/P_r = 7780 / 3881 = 2$$

2) The horizontal axis of a manipulator in steel industry

The centre of gravity of the vertical axis and load is placed in the middle of the horizontal centre-axis lx and 160 mm distance from the guide axis.

The dirty environment and the possibility of shocks lead to the choice to ROLBLOC system.

Guide rollers BL252 are used with guide GU62M Overload factor fw = 1,4

Centre distance $I_x = 350 \text{ mm}$ $I_y = 400 \text{ mm}$ F = 6000 N X = 0 Y = -1000 $Z_F = 160$ $Z_F = 160$ $Z_F = 160$ $Z_F = 160$

Load on rollers

The effective center axis I_c is 400 - 85 - 85 = 230 mm

$$P_a = \frac{6000 \cdot 160}{2 \cdot 230} = 2087 \,\text{N}$$

$$P_r = \frac{6000 \cdot (350+0)}{2 \cdot 350} + \frac{6000 \cdot 160 \tan 45}{2 \cdot 230} = 5087 \,\text{N}$$

Nominal life

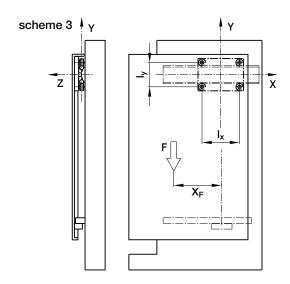
From the ROLBLOC table X=1, Y=1

$$P_{eq} = 1 \cdot 2087 + 1 \cdot 5087 = 7174 \text{ N}$$

$$L_{10} = 100 \quad \left(\frac{59000}{7174 \cdot 1.4}\right)^{10/3} = 36577 \text{ km}$$

Limit load check

$$K=P_a/P_r = 2087/5087 = 0,41$$


$$F_{k} = \frac{16800 \bullet 8400}{0.41 \bullet 16800 + (1 - 0.41 \tan 45) \bullet 8400} = 11915 \text{ N}$$

$$F_k/P_r = 11915 / 5087 = 2.3$$

3) The sliding door of a machine tool (rail on top)

The door is supported by the rail DC type on the upper edge and driven on bottom side by an auto-aligning carriage C3RAL on LM guide rail type. Because of the effect of the bottom rail there isn't any torque applied at the DC rail. The door weight acts in a plane coincident with the roller/rail vertical axis and as such there is no over turning moment. In this case, limit load calculation can be easily carried out from basic data F_r without F_k calculation.

Of course the calculation is always the same.

Guide rail DC18.65 is used with carriage T4 PFV 3518 250 Overload factor fw = 1,1 Centre distance I_x = 213 mm I_y = 113 mm F=450 N x=-300 y=-500 z = 0 (because of LM rail) mm

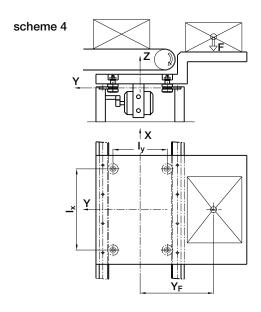
Load on rollers

The effective centeraxis I_c is 113 - 35 = 78 mm

$$P_a = \frac{450 \cdot 0}{2 \cdot 78} = 0 \text{ N}$$

$$P_r = \frac{450 \cdot (213 + 2 \cdot 300)}{2 \cdot 213} + \frac{450 \cdot 0 \tan 40}{2 \cdot 213} = 859 \,\text{N}$$

Nominal life


$$L_{10} = 100 \left(\frac{4570}{859 \cdot 1.1} \right)^3 = 11300 \text{ km}$$

Limit load check

$$F_r/P_r = 1500 / 859 = 1,7$$

4) Transfer unit

The box weight loads the carriage with max axial load. In this load configuration the limit load check calculation can be easily done directly by the F_a value without F_k calculation.

Guide rollers FRN(R)32EI with rails FSH32M Overload factor fw = 1,2 Centre distance $I_x = 670 \text{ mm}$ $I_y = 450 \text{ mm}$ F=400 N x=0 y=650 z = 50 mm

Load on rollers

The effective center axis I_c is 450 + 32 = 482 mm

$$P_a = \frac{400}{4} + \frac{400 \cdot 650}{2 \cdot 482} = 370 \text{ N}$$

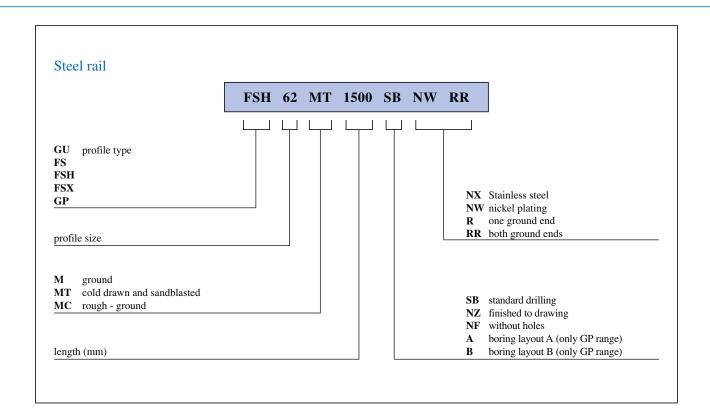
$$P_r = 370 \text{ tan } 40 = 310 \text{ N}$$

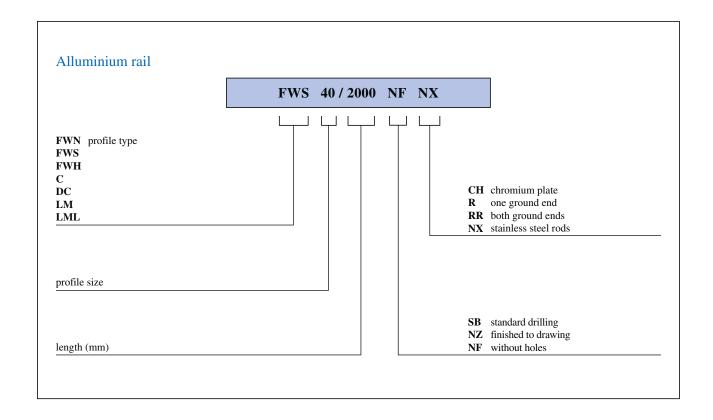
Nominal Life

$$L_{10r} = 100 \left(\frac{5600}{310 \cdot 1,2} \right)^{10/3} = 840000 \text{ km}$$

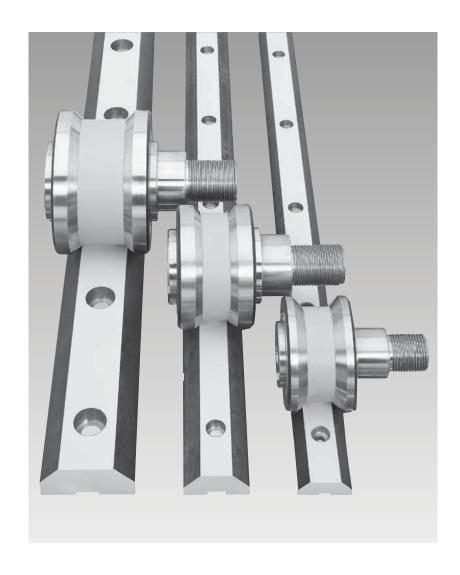
$$L_{10a} = 100 \left(\frac{2100}{370 \cdot 1,2} \right)^{10/3} = 17760 \text{ km}$$

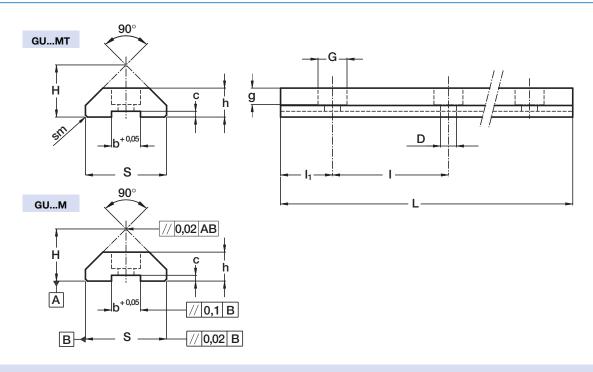
$$L_{10} = 17760 \text{ km}$$


Limit load check


$$F_a/P_a = 950 / 370 = 2.5$$

For further details, contact the NADELLA Technical Service.


Guide rail order code


GU System

The longitudinal slot, made with + 0.05 tolerance, permits using reference elements SAG for guide positioning.

	Dimensions (mm)											
Туре	H ± 0.05	h ± 0.05	S ± 0.05	D + 0.1	G	g	b + 0.05	c ± 0.05	sm	1	I ₁	Weight (kg/m) ⁽²⁾
GU 28 MT	19	11	28.8	5.5	10	5.7	10	2.5	0.7x45°	90	30	1.97
GU 35 MT	23.9	15.7	35.5	6.6	11	6.8	10	3.8	1x45°	90	30	3.35
GU 50 MT	35.5	21	50.8	11	18	11	16	4.3	1x45°	90	30	6.89
				max len	ath in sinal	e element l	_=6 000 mn	n (1)				

	Dimensions (mm)											
Туре	H ± 0.05	h ± 0.05	S ± 0.05	D + 0.1	G	g	b + 0.05	c ± 0.05	1	l ₁	Weight (kg/m) ⁽²⁾	
GU 28 M	18	10	28	5.5	10	5.7	10	2	90	30	1.8	
GU 35 M	23	15	35	6.6	11	6.8	10	3.3	90	30	3.2	
GU 50 M	34.5	20	50	11	18	11	16	3.8	90	30	6.8	
			ı	max length i	n single elen	nent L=4 020) mm (1)					

(1) Longer rails are supplied in sections with ground butt joints - (2) Weight without holes

Rails finishing

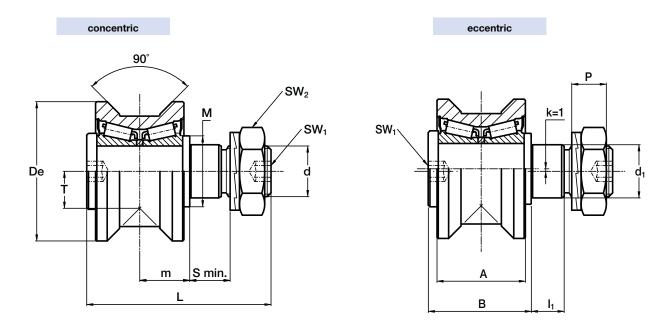
- drawn, induction hardened and sandblasted tracks (MT);
- drawn, induction hardened and ground (M)
- Induction hardening on raceways only

Hole layout

- holes according to catalogue (SB)
- finishes to drawing (NZ)
- without holes (NF)

Optional features

- ground one end (R)
- ground both ends (RR)
- chemical Nickel-plating (NW)

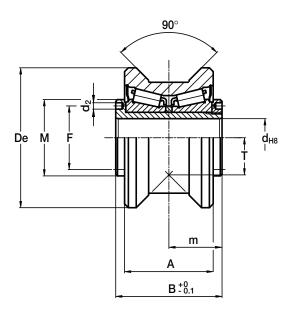

Example of standard designation: GU 35 MT 4300 SB

See page 17 for standard codification

Guide rollers RKU

The sides of the race are convex with radius R = 400.

Ту	pe		Dimensions (mm)													
concentric	eccentric	De	d ₁ ⁽¹⁾	d	Т	m	S min.	Р	L	Α	В	l ₁	М	SW ₁	SW ₂	k
RKU 55	RKUR 55	55	21	M 20 x 1.5	14.6	19.8	15	13.4	73	35	41	14	28	8	30	1
RKU 65	RKUR 65	65	27	M 24 x 1.5	18	20.8	19	15.4	83	37	44	18	35	10	36	1
RKU 75	RKUR 75	75	36	M 30 x 1.5	23.7	27	19	21.6	100	45	55	18	44	12	46	1
RKU 95	RKUR 95	95	38	M 36 x 1.5	25.5	30	24	24.6	115	56 ⁽⁵⁾	62	23	50	14	55	1
RKU 115	RKUR 115	115	42	M 36 x 1.5	33.5	34	33	24.6	135	60 63(5)	70	32	56	14	55	1

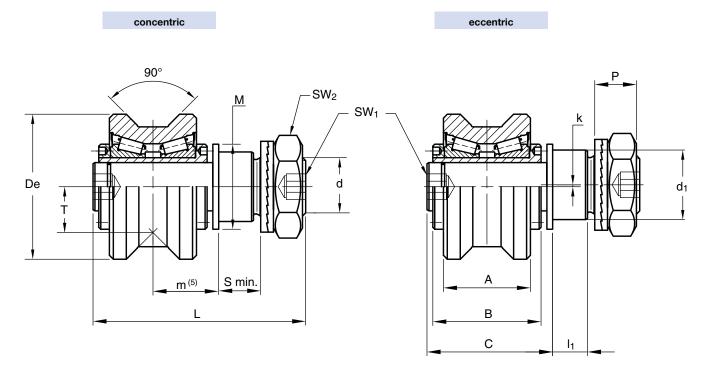

	Туре		Dynamic load (N)	Limit (N	loads N)	Life coe	fficients	Torque wrench ⁽²⁾ settings	Weight (kg)
			C _w (6)	radial F _r	axial F _a	x	Υ	(Nm)	(3/
RKU	J 55	RKUR 55	42 000	11 900	3 900	1	4	80	0.6
RKU	65	RKUR 65	48 000	17 000	6 900	1	3.7	160	0.9
RKU	J 75	RKUR 75	69 000	28 500	10 200	1	3.4	300	1.6
RKU	J 95	RKUR 95	134 000	29 000	12 700	1	4.5	450	2.8
RKU	115	RKUR 115	190 000	45 000	17 900	1	4.4	450	4.9

- 1) Housing bore tolerance: H7
- 2) The torque wrench settings are given for non-lubricated threads; for lubricated threads, multiply figure by 0.8
- 3) Standard seals: material NBR, RS type
- 4) On request, the guide rollers can be supplied with external parts in stainless steel (suffix **NX**) and with Viton seals for operating temperatures up to 120°C (suffix **V**, not available for **RKU 115**). Internal rolling elements in standard bearing steel.
- 5) Dimensions relating to the stainless-steel rollers (suffix NX)
- 6) Cw basic load for 100 km
- 7) The guide rollers include self-locking washers and hexagonal nut (DIN 439B) for fitting
- 8) Pressure angle α for load calculation: 45°

Guide wheels FKU

The sides of the race are convex with radius R = 400.

Type		Dimensions (mm)													
туре	De	d	Т	m	Α	В	F	d ₂ ⁽⁴⁾	М						
FKU 55	55	15	14.6	21	35	42	25	2.5	30						
FKU 65	65	20	18	22.5	37	45	29	3	35						
FKU 75	75	25	23.7	28	45	56	37	4	44						
FKU 95	95	28	25.5	32	56(2)	64	42	4	49						
FKU 115	115	35	33.5	36	63(2)	72	52	4	59						


Туре	Dynamic load (N)	Limit (N		Life coe	Weight (kg)	
	C _w ⁽³⁾	radial F _r	axial F _a	X	Υ	(3)
FKU 55	42 000	11 900	3 900	1	4	0.5
FKU 65	48 000	17 000	6 900	1	3.7	0.6
FKU 75	69 000	28 500	10 200	1	3.4	1.2
FKU 95	134 000	29 000	12 700	1	4.5	2.3
FKU 115	190 000	45 000	17 900	1	4.4	3.9

- 1) On request, the guide rollers can be supplied with external parts in stainless steel (suffix **NX**) and with Viton seals for operating temperatures up to 120°C (suffix **V** not available for **FKU 115**). Internal rolling elements in standard bearing steel
- 2) Dimensions relating to the stainless-steel rollers (suffix NX)
- 3) Cw basic load for 100 km
- 4) To prevent rotation between roller and shaft a pin can be fitted in one of the holes "d2" positioned in the side flange
- 5) Pressure angle α for load calculation: 45°
- 6) Standard seals: material NBR, RS type

Ту	ре							Dimensio	ns (mi	m)								
concentric	eccentric	De	d ₁ 1)	d	Т	m ⁵⁾ min.	m ⁵⁾ max	S min.	Р	L	A 4)	В	С	l ₁	М	SW ₁	SW ₂	k
RKUL 55	RKULR 55	55	21	M 20 x 1.5	14.6	24	30	15	13.4	83	35	42	51	14	30	8	30	1
RKUL 65	RKULR 65	65	27	M 24 x 1.5	18	25.5	31.5	19	15.4	93	37	45	54	18	35	10	36	1
RKUL 75	RKULR 75	75	36	M 30 x 1.5	23.7	31	37	19	21.6	110	45	56	65	18	44	12	46	1
RKUL 95	RKULR 95	95	38	M 36 x 1.5	25.5	36	43	24	24.6	128	53 56 ⁴⁾	64	75	23	49	14	55	1
RKUL 115	RKULR 115	115	42	M 36 x 1.5	33.5	40	47	33	24.6	148	60 63 ⁴⁾	72	83	32	59	14	55	1

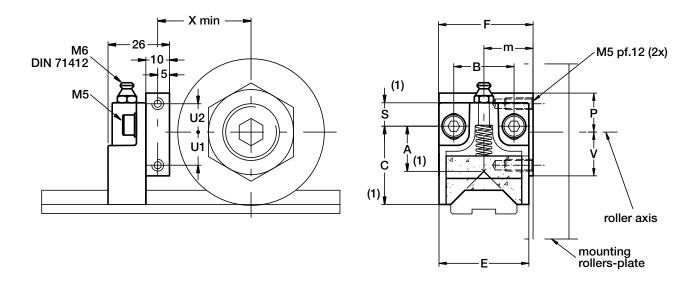
Т	ype	Dynamic load (N)	Limit load (N)	Torque wrench settings ²⁾	Weight (g)
		C _w ³⁾	radial F _r	(Nm)	(9)
RKUL 55	RKULR 55	42 000	3 050	80	800
RKUL 65	RKULR 65	48 000	6 850	160	1 100
RKUL 75	RKULR 75	69 000	11 200	300	1 800
RKUL 95	RKULR 95	134 000	13 800	450	3 000
RKUL 115	RKULR 115	190 000	24 000	450	5 100

- 1) Housing bore tolerance: H7
- 2) The torque wrench settings are given for non-lubricated threads; for lubricated threads multiply figure by 0.8
- 3) Cw = Basic load for 100 KM
- 4) Dimensions for stainless steel (NX) version
- 5) To ensure a safety and proper functioning the dimension m must not be higher then m max

On request the guide rollers can be supplied with external parts in stainless steel (suffix NX). Internal rolling elements in standard bearing steel

Standard seals: material NBR, RS type

On request guide rollers can be supplied with Viton seals for operating temperatures up to 120°C (suffix V, not available for RKUL 115)

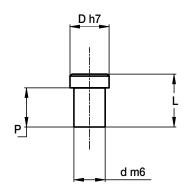

The guide rollers include self-locking washers and hexagonal nut (DIN 439B) for fitting

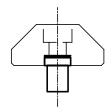
Pressure angle α for load calculation: 45°

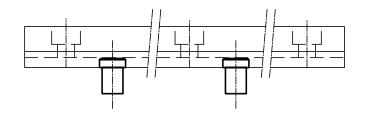
Lubricator LUBU

T					[Dimensio	ns (mm	1)					Weight	Commented as a binations
Туре	Х	U1	U2	F	m	В	S	С	Α	Е	V	Р	(g)	Suggested combinations
LUBU 55	35	12	14	40	19.8	25.5	10	34	20	38	16.5	18.5	65	RKU 55 RKUR 55 FKU 55
LUBU 65	40	14	12	40	20.8	25.5	10	34	20	38	18.5	16.5	65	RKU 65 RKUR 65 FKU 65
LUBU 75	45	19	11	50	27	25.5	10	43	25.4	44	24	16	85	RKU 75 RKUR 75 FKU 75
LUBU 95	55	21	9	60	30	30	16.5	50	24.9	58	31	19	140	RKU 95 RKUR 95 FKU 95
LUBU 115	65	30	0	63	34	30	16.5	50	24.9	58	40	10	140	RKU 115 RKUR 115 FKU 115

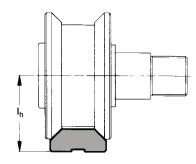
- 1) The dimension of the plastic part refers to the centre of the regulation-slot. Allows a translation of +/- 3 mm.
- 2) The lubricator is supplied with the felt already lubricated. The lubricant has a mineral oil base.
- 3) During the mounting fix the aluminium support to the rollers plate, adjust the height of the plastic part in order to put it in contact with the raceways and than block it in that position with the M5 screws.


Optional features


- felt without lubricant (D)

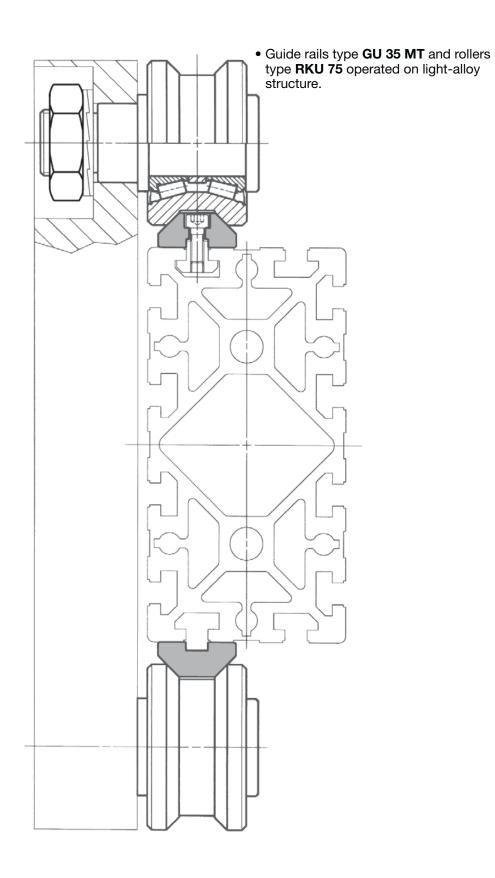


Guide pins SAG

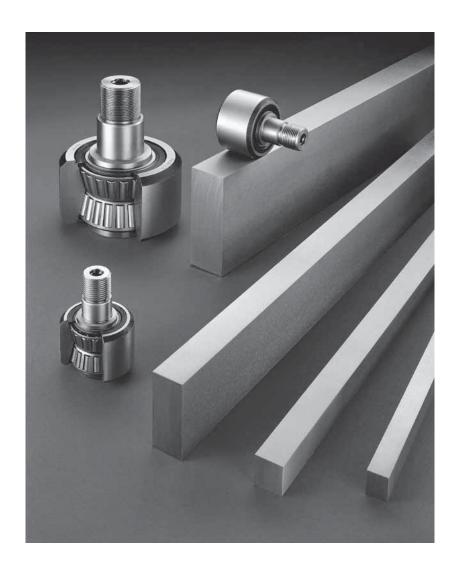


Din tuno	Cuido tupo		Dimensions (mm)								
Pin type	Guide type	D	d ⁽¹⁾	Р	L						
SAG 28	GU 28 MT	10	8	10	12.3						
SAG 35	GU 35 MT	10	8	10	13.5						
SAG 50	GU 50 MT	16	10	11.2	15						

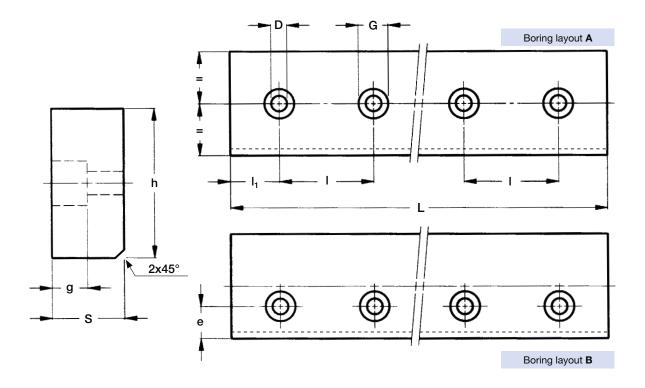
¹⁾ Housing bore tolerance: H7


Guide roller combinations (RKU, FKU, RKUL)

Roller			I _h (mm)		
Guide	RKU, FKU, RKUL 55	RKU, FKU, RKUL 65	RKU, FKU, RKUL 75	RKU, FKU, RKUL 95	RKU, FKU, RKUL 115
GU 28 MT	33.6	37	-	-	-
GU 28 M	32.6	36	-	-	-
GU 35 MT	-	41.9	47.6	-	-
GU 35 M	-	41	46.7	-	-
GU 50 MT	-	-	-	61	69
GU 50 M	-	-	-	60	68



Mounting Examples


GP System

Guide rail GP...MC

				Dimensio	ons (mm)				Weight (2)			
Type	h ± 0.05	S ± 0.05	D	G	g	е	I	l ₁	(kg/m)			
GP 2626 MC	26	26	9	15	9	(3)	120	50	5.3			
GP 3232 MC	32	32	9	15	9	(3)	150	60	8.1			
GP 3617 MC	36	17	6.5	11	6.8	12.5	120	50	4.8			
GP 4321 MC	43	21	9	15	9	11.5	150	60	7			
GP 5050 MC	50	50	18	26	17	(3)	180	60	19.6			
GP 6222 MC	62	22	9	15	9	21	150	60	10.7			
GP 7232 MC	72	32	13.5	20	13	24	180	70	18.1			
GP 8222 MC	82	22	13.5	20	13	20	180	70	14.2			
GP 12050 MC	120	50	18	26	17	30	180	70	47			
	Max length of single guide element L = 5 800 mm (1)											

- 1) Longer rails are supplied in sections with ground butt joints
- 2) Weight without holes
- 3) For boring layout A only

Rails finishing

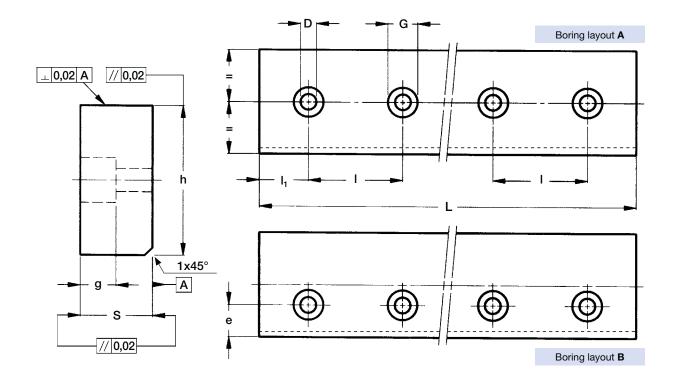
- material: C60 or C45
- induction hardened on every side
- surface finished by a rough grinding (MC)

Hole layout

- holes according to catalogue (A or B)
- finishes to drawing (NZ)
- without holes (NF)

Optional features

- ground one end (R)
- ground both ends (RR)
- chemical nickel plating (NW)


Example of standard designation: **GP 6222 MC 4300 B**

See page 17 for standard codification

Guide rails GP...M

				Dimensio	ons (mm)				Weight (2)				
Type	h ± 0.05	S ± 0.05	D	G	g	е	I	l ₁	(kg/m)				
GP 2525 M	25	25	9	15	8.5	(3)	120	50	4.9				
GP 3131 M	31	31	9	15	8.5	(3)	150	60	7.5				
GP 3516 M	35	16	6.5	11	6.8	12	120	50	4.4				
GP 4220 M	42	20	9	15	9	11	150	60	6.5				
GP 6121 M	61	21	9	15	9	20.5	150	60	10				
GP 7131 M	71	31	13.5	20	12.5	23.5	180	70	17.3				
GP 8121 M	81	21	13.5	20	13	19.5	180	70	13.4				
	Max length of single guide element L = 4 020 mm (1)												

- 1) Longer rails are supplied in sections with ground butt joints (max. length with treatment NW on request)
- 2) Weight without holes
- 3) Only available according to figure A

Rails finishing

- material: C60 or C45
- induction hardened on every side
- grounded surface (M);

Hole layout

- holes according to catalogue (A or B)
- finishes to drawing (NZ)
- without holes (NF)

Optional features

- ground one end (R)
- ground both ends (RR)
- chemical Nickel-plating (NW)

Example of standard designation: GP 6121 M 2070 B

See page 17 for standard codification

Guide rollers PK

Concentric eccentric

SW2

SW1

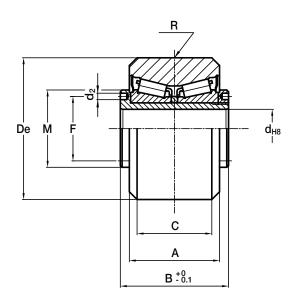
SW1

A

A

Ту	rpe							Dime	ensions	(mm)							
concentric	eccentric	De	d ₁ ⁽¹⁾	d	m	S min.	Р	L	Α	В	С	R	l ₁	М	SW ₁	SW ₂	k
PK 52C	PKR 52C	52	21	M 20 x 1.5	19.8	15	13.4	73	35	41	29	800	14	28	8	30	1
PK 62C	PKR 62C	62	27	M 24 x 1.5	20.8	19	15.4	83	37	44	29	800	18	35	10	36	1
PK 72C	PKR 72C	72	36	M 30 x 1.5	27	19	21.6	100	45	55	33	1 200	18	44	12	46	1
PK 90C	PKR 90C	90	38	M 36 x 1.5	30	24	24.6	115	56 ⁽⁵⁾	62	45	1 200	23	50	14	55	1
PK 110C	PKR 110C	110	42	M 36 x 1.5	34	33	24.6	135	63 ⁽⁵⁾	70	48	1 200	32	56	14	55	1

В


Ту	pe	Dynamic load (N)	Limit load (N)	Torque ⁽²⁾ wrench setting	Weight (Kg)
		C _w (6)	radial F _r	(Nm)	
PK 52C	PKR 52C	42 000	11 900	80	0.6
PK 62C	PKR 62C	48 000	22 100	160	0.9
PK 72C	PKR 72C	69 000	31 300	300	1.6
PK 90C	PKR 90C	134 000	43 800	450	2.8
PK 110C	PKR 110C	190 000	55 600	450	4.9

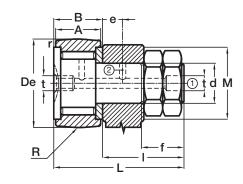
- 1) Housing bore tolerance: H7
- 2) The torque wrench settings are given for non-lubricated threads; for lubricated threads, multiply figure by 0.8
- 3) Standard seals: material NBR, RS type
- 4) On request, the guide rollers can be supplied with external parts in stainless steel (suffix **NX**) and with Viton seals for operating temperatures up to 120°C (suffix **V**, up to dimension PK 90 C included). Internal rolling elements in standard bearing steel
- 5) Dimensions relating to the stainless-steel rollers (suffix NX)
- 6) Cw basic load for 100 km
- 7) The guide rollers are complete with self-locking washers and hexagonal nut for fitting

Guide wheels FK

Туре	Dimensions (mm)											
	De	d	Α	В	С	R	F	d ₂	M			
FK 52C	52	15	35	42	29	800	25	2.5	30			
FK 62C	62	20	37	45	29	800	29	3	35			
FK 72C	72	25	45	56	33	1 200	37	4	44			
FK 90C	90	28	56(3)	64	45	1 200	42	4	49			
FK 110C	110	35	60 63(3)	72	48	1 200	52	4	59			

Туре	Dynamic load (N)	Limit load (N)	Weight (kg)
	C _w ⁽⁴⁾	radial F _r	
FK 52C	42 000	11 900	0.5
FK 62C	48 000	22 100	0.6
FK 72C	69 000	31 300	1.2
FK 90C	134 000	43 800	2.3
FK 110C	190 000	55 600	3.9

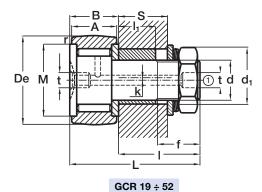
- 1) Standard seals: material NBR, RS type
- 2) On request, the guide rollers can be supplied with external parts in stainless steel (suffix **NX**) and with Viton seals for operating temperatures up to 120°C (suffix **V**, up to dimension FK 90 C included). Internal rolling elements in standard bearing steel
- 3) Dimensions relating to the stainless-steel rollers (suffix NX)
- 4) Cw basic load for 100 km
- 5) To prevent rotation between roller and shaft a pin can be fitted in one of the holes "d2" positioned in the side flange

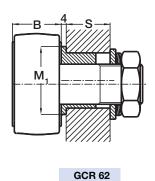

Guide rollers GC

concentric

GC

GC...EE with plastic seals **GC...EEM** with metal shields





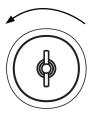
eccentric

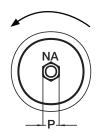
GCR

GCR...EE with plastic seals **GCR...EEM** with metal shields

Holes (1) and (2) beginning from De=30 mm

Type (1)		Dimensions (mm)																
		De	Α	B max	d	d ₁ (7)	k	L max	l max	f	pitch	r min	t	е	M (6)	M ₁	P (2)	l ₁
GC 19	GCR 19	19	11	12.2	8	11	0.5	32.7	20.5	10	1.25	0.3	4	-	15.3	-	-	10
GC 22	GCR 22	22	12	13.2	10	14	1	36.7	23.5	12	1.25*	0.3	4	-	18.2	-	-	11
GC 24	GCR 24	24	12	13.2	10	14	1	36.7	23.5	12	1.25*	0.3	4	-	18.2	-	-	11
GC 26	GCR 26	26	12	13.2	10	14	1	36.7	23.5	12	1.25*	0.3	4	-	20.8	-	-	11
GC 28	GCR 28	28	12	13.2	10	14	1	36.7	23.5	12	1.25*	0.3	4	-	20.8	-	-	11
GC 30	GCR 30	30	14	15.2	12	16	1	40.7	25.5	13	1.5	0.6	4	6	24.8	-	8	11
GC 32	GCR 32	32	14	15.2	12	16	1	40.7	25.5	13	1.5	0.6	4	6	24.8	-	8	11
GC 35	GCR 35	35	18	19.6	16	21	1,5	52.6	33	17	1.5	0.6	6	8	28.8	-	10	14
GC 40	GCR 40	40	20	21.6	18	24	1,5	58.6	37	19	1.5	1	6	8	33.8	-	12	16
GC 47	GCR 47	47	24	25.6	20	27	2	66.6	41	21	1.5	1	6	9	38.7	-	14	17.5
GC 52	GCR 52	52	24	25.6	20	27	2	66.6	41	21	1.5	1	6	9	38.7	-	14	17.5
GC 62	GCR 62	62	29	30.6	24	36	3	80.6	50	25	1.5	1	6	11	52	44	12	18

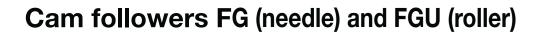

- * These threads may be supplied with pitch of 1 mm (clamping torque 13 Nm)
- Housing bore tolerance: H7
- The guide rollers are complete with washers and hexagonal nut for fitting



Guide rollers GC

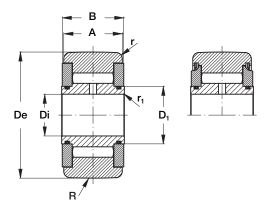
- 1) Specification for followers with cylindrical outer ring: GCL, GCRL, GCL...EE, GCL...EEM, GCRL...EEM. On request the followers can be supplied possessing a screw driver slot at the threaded end of the stud (suffix **AK**).
- 2) Followers with outer diameter up to 28 mm included possess a screw driver slot on the head. Followers with outer diameter from 30 to 52 mm included can possess the screw driver slot or the hexagonal socket. For outer diameter above 52 mm the followers possess the hexagonal socket.
- 3) The load shown is limited by the strengths of the stud and outer ring.
- 4) With oil lubrication of followers without seals GC, GCR, GCL e GCRL, these speeds can be increased by 30% for continuous rotation or up to 50% momentarily.
- 5) These torques are shown for dry threads. For lubricated threads, take 0,8 of these values.
- 6) Minimum recommended abutment diameter in case of high axial load or in the presence vibrations.
- 7) The eccentric collar is tightly fitted on the follower stud.
- 8) C_w dynamic load for 100 Km

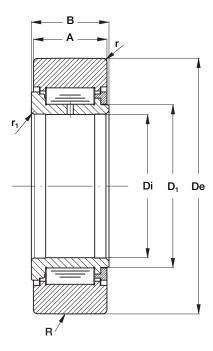
DIRECTION FOR ADJUSTMENT OF THE EXCENTER



			Dynamic load		Limit loa			Coood limit arooss	Torque wrench setting (Nm) (5)		
	S	R	(N)	GC	C	GC	R	Speed limit grease lubrication	setting	(NM) (5)	
min	max	n	C _w (8)	Dyn. F _r	Stat. F _{or}	Dyn. F _r	Stat. F _{or}	r.p.m. (4)	GC	GCR	
10.5	13	160	4 900	2 830	5 200	2 830	4 500	7 600	8	5	
11.5	14	200	5 600	4 900	8 100	4 900	5 600	6 300	20	16	
11.5	14	200	6 300	5 200	9 200	5 200	5 600	6 300	20	16	
11.5	14	200	8 400	5 200	9 600	5 200	6 100	5 500	20	16	
11.5	14	200	9 200	5 200	9 600	5 200	6 100	5 500	20	16	
11.5	14.5	250	12 700	7 700	14 300	7 700	10 400	4 800	26	22	
11.5	14.5	250	13 800	7 700	14 300	7 700	10 400	4 800	26	22	
14.5	19	320	19 800	11 400	24 000	11 000	11 000	3 850	64	55	
16.5	22	400	21 400	14 200	27 000	12 300	12 300	3 150	90	75	
18	25	500	31 800	21 400	40 000	21 400	23 700	2 700	120	100	
18	25	500	39 400	21 400	40 000	21 400	23 700	2 700	120	100	
18.5	25.5	640	51 300	31 000	57 500	28 800	28 800	2 330	220	180	

Preferred sizes are: 19/22/26/30/35/40/52/62


Track rollers in stainless steel are available on stock in the following sizes: 19/26/30/35/40 (suffix **NX**). Internal rolling elements in standard bearing steel

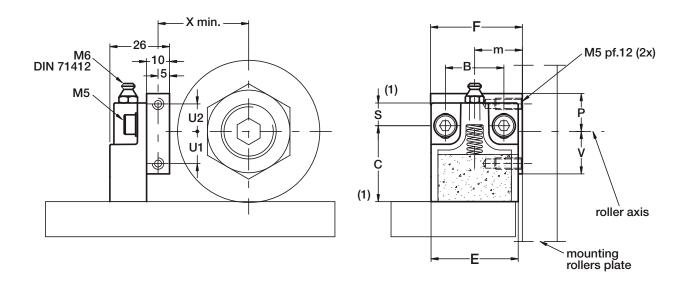


FG series without seals **FG**...**EEM** series with metal shields

FGU...MM series: with metal shields

T	Dimensions (mm)											
Туре	De	Di	Α	B max	D ₁	M (1) min	r min	r ₁ min	R			
FG 6 19	19	6	11	12	8.5	12	0.3	0.3	160			
FG 10 30	30	10	14	15	13.8	19.5	0.6	0.3	250			
FG 12 32	32	12	14	15	16	21.5	0.6	0.3	250			
FG 15 35	35	15	18	19	18.7	24	0.6	0.3	320			
FG 17 40	40	17	20	21	22	28	0.6	0.3	400			
FG 20 47	47	20	24	25	25.7	32.5	1	0.3	500			
FG 25 52	52	25	24	25	30.5	37	1	0.3	500			
FG 30 62	62	30	28	29	35.2	44	1	0.3	640			
FG 35 72	72	35	28	29	41	50	1	0.6	640			
FG 40 80	80	40	30	32	46.7	56	1	0.6	800			
FG 50 90	90	50	30	32	59.1	69	1	0.6	800			
FGU 55 100	100	55	34	36	64	75.8	1.5	0.6	800			
FGU 60 110	110	60	34	36	69.5	81.5	1.5	0.6	800			
FGU 65 120	120	65	40	42	74.5	86.7	1.5	0.6	900			
FGU 75 130	130	75	40	42	84	97	1.5	0.6	900			

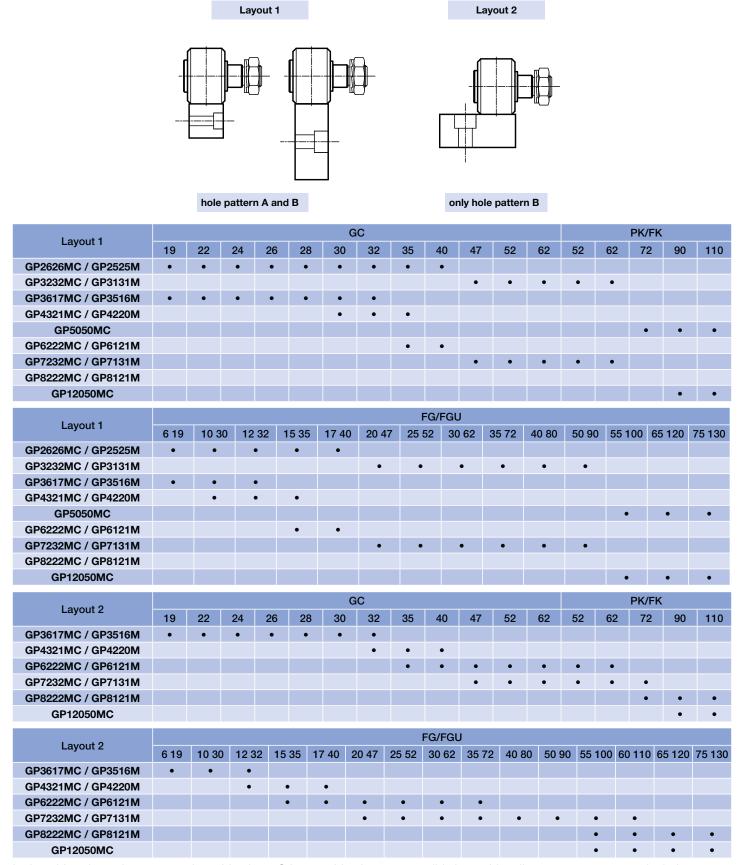
Cam followers FG (needle) and FGU (roller)


- 1) Minimum abutment diameter recommended in case of heavy axial load or vibration.
- 2) Cw dynamic load 100 KM. These capacities are to be used for all types when the convex outer ring rotates directly on a cam. They take account of the repetitive loads on the follower and consequent deformation of the outer ring.
- 3) The load shown is limited by the strength of the outer ring when mounted in a housing.
- 4) With oil lubrication of followers without seals FG, FGL types, these speeds can be increased by 30% for continuous rotation or, up to 50% for intermittent rotation.

Dynamic load (N) (2)	Limit loa	ids (3) (N)	Speed limit grease
Cw	Dyn. F	Sta. Fo	lubrication (4) r.p.m.
4 960	4 050	6 700	7 600
12 670	8 500	15 500	4 800
12 910	8 300	16 200	4 200
18 510	12 200	25 600	3 750
23 870	14 200	31 000	3 150
31 800	21 400	44 500	2 700
33 590	23 600	48 000	2 330
47 000	38 000	73 000	2 050
55 560	49 000	90 000	1 800
71 180	66 000	123 000	1 620
69 650	74 000	123 000	1 300
111 350	53 400	109 000	1 900
127 630	64 000	129 000	1 770
163 760	89 000	174 000	1 650
170 796	97 000	185 000	1 480

Lubricator LUBP

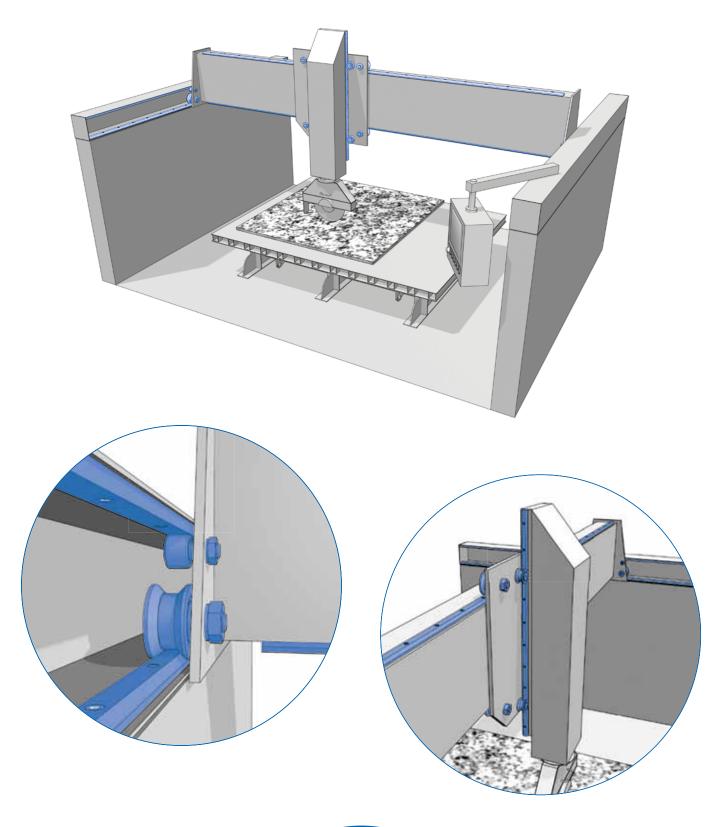
Time		Dimensions (mm)											Currented combinations
Type	Х	U1	U2	F	m	В	S	С	Е	V	Р	(g)	Suggested combinations
LUBP 52	33.5	12	14	40	19.8	25.5	10	32.5	38	16.5	18.5	65	PK 52 C PKR 52 C FK 52 C
LUBP 62	38.5	14	12	40	20.8	25.5	10	32.5	38	18.5	16.5	65	PK 62 C PKR 62 C FK 62 C
LUBP 72	43.5	19	11	50	27	25.5	10	40	44	24	16	85	PK 72 C PKR 72 C FK 72C
LUBP 90	52.5	21	9	60	30	30	16.5	43.5	58	31	19	140	PK 90 C PKR 90 C FK 90 C
LUBP 110	62.5	30	0	63	34	30	16.5	43.5	58	40	10	140	PK 110 C PKR 110 C FK 110 C


- 1) The dimension of the plastic part refers to the centre of the regulation slot. The regulation slot allows a translation of +/- 3 mm
- 2) The lubricator is supplied with the felt already lubricated. The lubricant has a mineral oil base
- 3) During the mounting fix the aluminiun support to the rollers plate, adjust the height of the plastic part in order to put it in contact with the raceways and then block it in that position with the M5 screws.

Optional features

- felt without lubricant (D)

Guide rollers combinations



In the tables above the suggested combinations. Other combinations are possible but guide rollers must not run over the holes.

Mounting examples

MARBLE MACHINERY Heavy-Line systems GU and GP

Rolbloc System

Rolbloc system

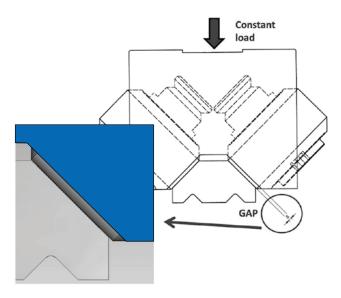
The carriages based on Rolbloc's system are recommended for applications with heavy loads, high frequency of work and aggressive environment (dust, abrasive).

For the profiled guide rollers, the contact beween the rollers and the rail takes place on the ground raceways, which are inclined respect the rotation axis of the guide roller. Due to this inclination angle in the contact area there is a dragging proportional to the dimension of the contact area and to the value of the inclination angle. In the ROLBLOC system the rotation axes of the roller guides are parallel to the raceways of the rail, with the following pure rolling. The pure rolling recudes the superficial stress and the effects of the dust between the surfaces.

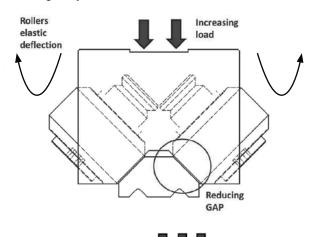
Carriage BL2.., BL4..

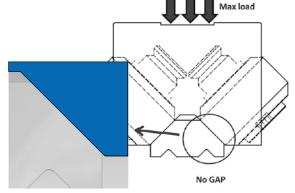
ROLBLOC carriages **BL2**.. and **BL4**.. are composed by a body in burnished steel on which are mounted two or four roller guides equipped with tapered rollers (similar to flat roller guides type PK..C). The final part of the code (that can be 52, 75 or 115) shows the external diameter of the roller guides.

Rolbloc BL2..DS with DISCHARGE SYSTEM


ROLBLOC carriages **BL2..DS** have a special block profile with a profiled surface close at the rail GU62M or MT. The space S is set so that during normal operation there is no contact between the block and the rail and the carriage moves on its rollers. When the load goes over the normal value the deflection of the rollers reduces the space S since there is direct contact between the rail and the block. In this way the system is protected versus extremely and or uncontrolled loads. When the extra load is removed the system returns in its normal position thanks to the rollers elasticity.

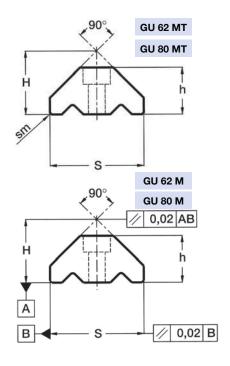
Rolbloc in DS version is a simple and effective solution in the following applications:

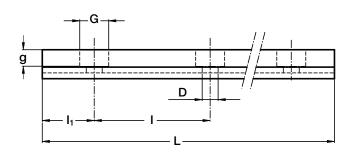

- Systems that have to be blocked in a position. The blocking system, i.e. an hydraulic cylinder or a bolt used as tie beam, can push directly the carriage against the rail without component damage risk.
- Systems where high stiffness support is required in a static operation. When the block is pushed in contact with the rail the system stiffness increases and stability is given versus deformation and vibrations
- Systems that have to stand shocks and extra load that could compromise the roller resistance. This allows to select the component size on the normal load during the operation and not on the pick force.


How it works

The carriage is realized with a special design that provides a gap between carriage body and rail.

When an heavy load is applied, the rollers are free to flex until the carriage body lean on the guide, discharging on it all the load that otherwise would break the rollers. After removing the load the carriage is again able to move regularly on the rail.





Guide rails GU..M, GU..MT

Dimensions (mm)											
Туре	H ± 0.05	h ± 0.05	S ± 0.05	D + 0.1	G	g	sm	I	I ₁	Weight (kg/m) ⁽²⁾	
GU 62 MT	43.5	32.5	63.5	11	18	11	2x45°	120	30	11.80	
GU 80 MT	56.7	41.5	81.5	13.5	20	13	2x45°	120	30	20.30	
max length in single element I = 6 000 mm											

Dimensions (mm)											
Туре	H ± 0.05	h ± 0.05	S ± 0.05	D + 0.1	G	g	I	I ₁	Weight (kg/m) ⁽²⁾		
GU 62 M	42	31	62	11	18	11	120	30	10.9		
GU 80 M											
max length in single element L = 4 020 mm (1)											

(1) Longer rails are supplied in sections with ground butt joints - (2) Weight without holes

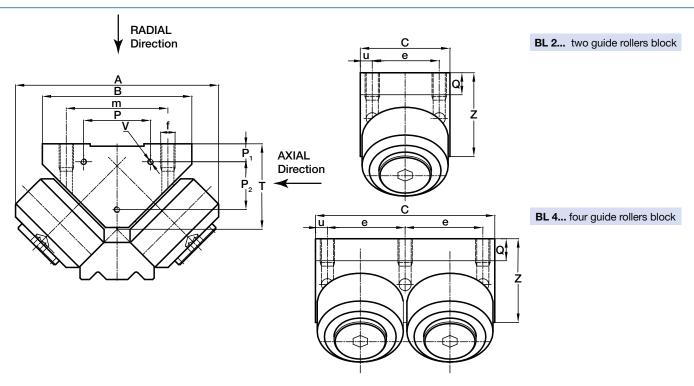
Rails finishing

- drawn, induction hardened and sandblasted tracks (MT)
- drawn, induction hardened and ground (M)
- induction hardening on raceways only

Hole layout

- holes according to catalogue (SB)
- finishes to drawing (NZ)
- without holes (NF)

Optional features

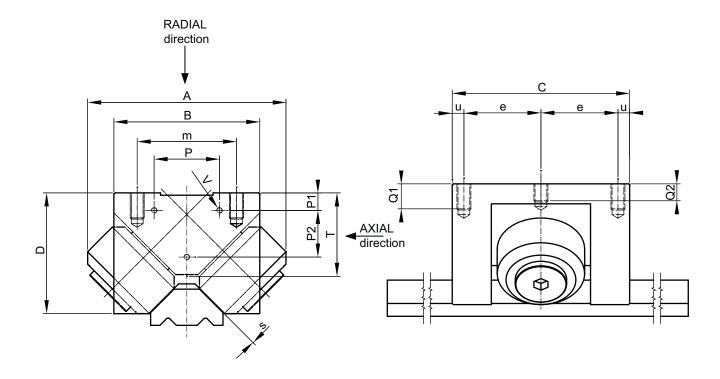

- ground one end (R)
- ground both ends (RR)
- chemical Nickel-plating (NW)

Example of standard designation: GU 62 MT 4300 SB

Carriages BL

T							Dimensio	ns (mm)							Weight
Туре	Α	В	С	Р	P ₁	P ₂	V	m	е	u	f	Q	Т	Z	(kg)
BL 2 52	136	90	56	54	14	16	M4x 7	70	40	8	M 8	12	43	47	2.4
BL 4 52	136	90	112	54	14	16	M4x 7	70	48	8	M 8	12	43	47	4.8
BL 2 75	170	125	76	56	15	40	M5x 8	85	56	10	M 12	17.1	71.5	70	6.5
BL 4 75	170	125	152	56	15	40	M5x 8	85	66	10	M 12	17.1	71.5	70	13
BL 2 115	243	170	125	80	15	70	M5x10	120	95	15	M 14	22	99.8	93	21.6
BL 4 115	243	170	250	80	15	70	M5x10	120	110	15	M 14	22	99.8	93	43.2

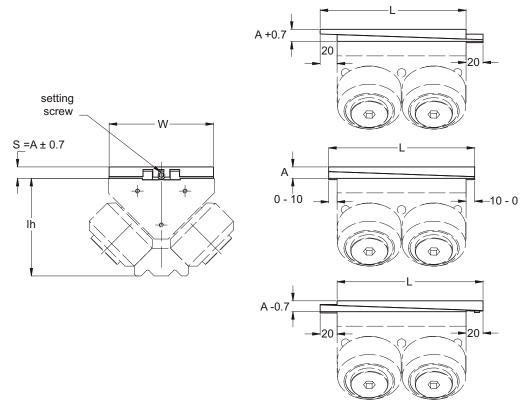
Type	Dynamic load (N)	Limit (1	loads N)	Life coefficients		
	C_{w} (3) Radial F_{r} (4) A		Axial F _a (5)	X	Υ	
BL 2 52	59 000	16 800	8 400	1	1	
BL 4 52	118 000	33 600	16 800	1	1	
BL 2 75	99 000	44 200	22 100	1	1	
BL 4 75	198 000	88 400	44 200	1	1	
BL 2 115	275 000	78 600	39 300	1	1	
BL 4 115	550 000	157 200	78 600	1	1	


- 1) Standard seals: material NBR, RS type
- 2) On request, the guide rollers can be supplied in stainless steel (suffix **NX**) and with Viton seals for operating temperatures up to 120°C (suffix **V**, up to dimension BL.... 75 included). Internal rolling elements in standard bearing steel
- 3) $C_{\rm w}$ basic load for 100 km, load perpendicular to the roller side fixing surface
- 4) Loads perpendicular to the roller side fixing surface
- 5) Loads parallel to the roller side fixing surface
- 6) Pressure angle α for loads checking calculation: 45°

NEW - Carriages BL 2215 and BL 2280 can be supplied on request, for limit axial loads up to 540 000 N.

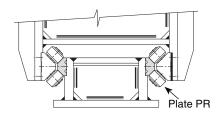
Carriages BL..DS with discharge system

Typo		Dimensions (mm)										Weight			
Туре	Α	В	С	Р	P1	P2	V	m	е	u	f	Q1	Q2	Т	vveigni
BL 2 52 DS	136	90	112	54	14	16	M4x7	70	48	8	M 8	16	12	43	4.8
BL 2 75 DS	170	125	152	56	15	40	M5x8	85	66	10	M 12	20	15	71.5	13


Туре	Dynamic load (N)	Limit lo	ads (N)	Life coe	fficients
	Cw ⁽³⁾	radial F _r ⁽⁴⁾	axial F _a (5)	X	Υ
BL252DS	59000	16800	8400	1	1
BL275DS	99000	44200	22100	1	1

- 1) Standard seals: material NBR, RS type
- 2) On request, the guide rollers can be supplied in stainless steel (suffix NX) and with Viton seals for operating temperatures up to 120°C (suffix V, up to dimension BL...75 included). Internal rolling elements in standard bearing steel
- 3) Cw basic load for 100 km, load perpendicular to the roller side fixing surface
- 4) Loads perpendicular to the roller side fixing surface
- 5) Loads parallel to the roller side fixing surface
- 6) Pressure angle (for loads checking calculation): $45^{\circ}\,$

Adjustment plates PR

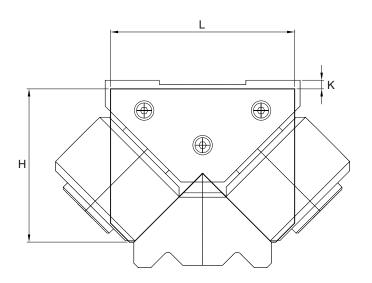


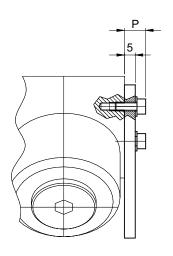
Time		Dimensions (mm)		Maight (kg)	Combination with
Туре	L	w	Α	Weight (kg)	ROLBLOC carriages
PR 252	76	88	13.5	0.5	BL252
PR 452	132	88	13.5	1	BL452/BL252DS
PR 275	96	123	13.5	1	BL275
PR 475	172	123	13.5	1.9	BL475/BL275DS
PR 2115	145	168	17	2.9	BL2115
PR 4115	270	168	17	5.7	BL4115

The adjusting plates allow to easily set the proper preload during the mounting on the machine by acting on the dimension lh (see pg. 45 for the value lh).

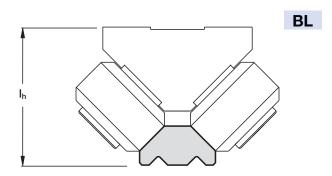
The two steel plates are placed between the carriage ROLBLOC and the mounting surface. Setting is done by the setting screw before the final tightening of the screws used to mount the ROLBLOC.

Dimension W of the plates is 2 mm lower than ROLBLOC central body. Use the ROLBLOC side as a reference for the positioning. When the plates are set in the mid position (thickness A) they can be shifted 10 mm from the block centreline. The allowed dislpacement can be reduced with setting to zero for the minimum or maximum regulation. Consider 10 mm of space beyond the plate length on each side (20 mm over the block length) to use the full thickness setting capability +/- 0,7 mm.




A typical example of ROLBLOC system assembly, with opposing parallel guides is shown. For optimal assembly, it is recommended to use adjustment plates PR on one side.

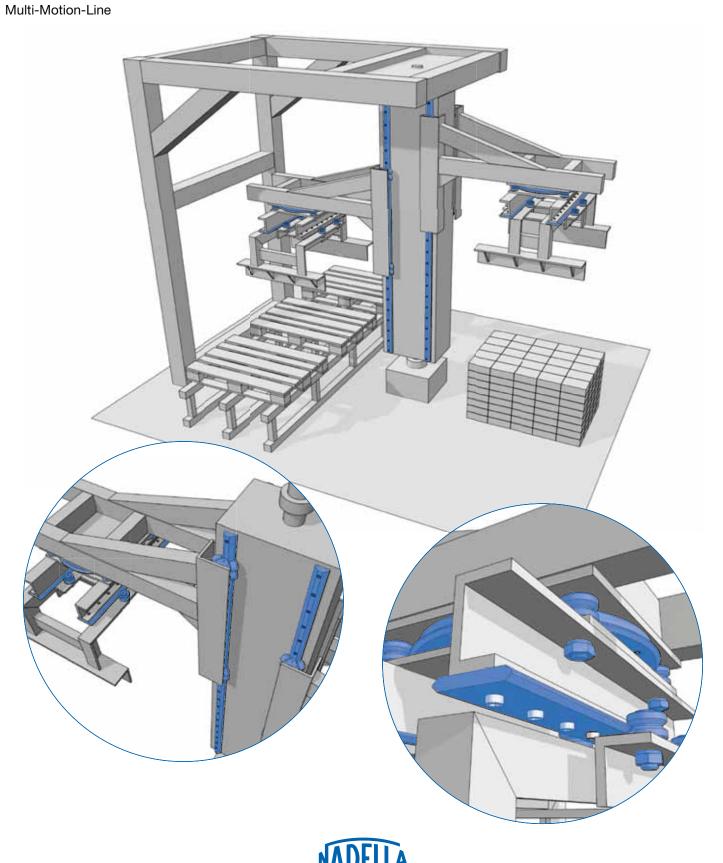
Wipers RPT



Material: Plastic (polyzene), color: green

Time		Dimensio	ons (mm)		Combination	
Туре	L	Н	K	Р		
RPT 52	85	70.75	4±1.5	9.8	BL 2 52 and BL 4 52	
RPT 75	120	99.25	4±2	11	BL 2 75 and BL 4 75	
RPT 115	165	135.55	5±2	11	BL 2 115 and BL 4 115	

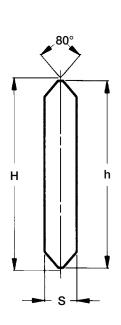
Guide/Carriage combinations

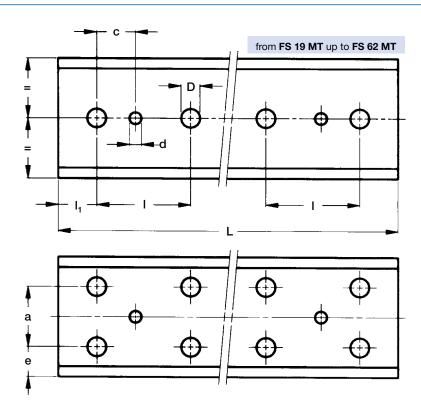


Carriage		I _h (mm)											
Guide	BL 2 52	BL 4 52	BL 2 75	BL 4 75	BL 2 115	BL 4 115							
GU 62 MT	86.5	86.5	115	115	-	_							
GU 62 M	85	85	113.5	113.5	-	_							
GU 80 MT	-	-	-	-	156.5	156.5							
GU 80 M	-	-	-	-	155	155							

Mounting example

Palletising equipment Rolbloc V-Line


FS System



Guide rails FS..MT

					Dimensio	ons (mm)					Weight ²⁾
Туре	H ± 0.1	h ± 0.1	S ± 0.1	d ³⁾ + 0.05	D	C ₃₎	е	a	I	l ₁	(kg/m)
FS 19 MT	22.2	21	5.3	4	6.5	15	-	-	90	30	0.8
FS 22 MT	28.8	27	5.8	5	6.5	15	-	-	90	30	1.1
FS 32 MT	43.8	42	6.8	6	6.5	15	-	-	90	30	2.1
FS 35 MT	48.8	47	8.8	6	9	20	-	-	90	30	3.0
FS 40 MT	64.5	62	8.8	6	9	20	-	-	90	30	4.1
FS 47 MT	80.15	77.2	11	6	11.5	20	-	-	90	30	6.3
FS 52 MT	91.35	88.2	13	8	13.5	20	-	-	90	30	8.5
FS 62 MT	106	103	15.7	8	13.5	20	-	-	90	30	11.7
FS 72 MT	124.6	121	19	10	17.5	30	30.5	60	90	30	16.9
Maximum length of single guide element L = 6 000 mm (1)											

¹⁾ Longer rails are supplied in sections with ground butt joints - 2) Weight without holes

Rails finishing

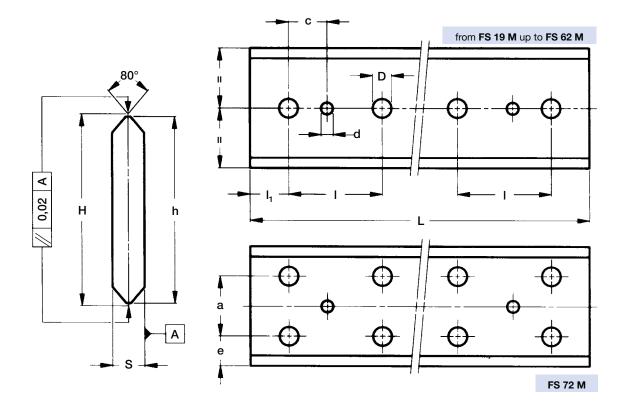
- drawn, induction hardened and sandblasted tracks (MT)
- induction hardening on raceways only

Hole layout

- holes according to catalogue (SB)
- finishes to drawing (NZ)
- without holes (NF)

Optional features

- ground one end (R)
- ground both ends (RR)
- chemical Nickel-plating (NW)
- pin holes(3)


Example of standard designation: FS 52 MT 5280 SB

³⁾ Standard layout without pin holes (pin holes only on request)

Guide rails FS..M

					Dimensio	ons (mm)					Weight (2)
Туре	H ± 0.05	h ± 0.1	S ± 0.05	d ⁽³⁾ + 0.05	D	c (3)	е	а	1	l ₁	(kg/m)
FS 19 M	20.95	20	4.5	4	6.5	15	-	-	90	30	0.6
FS 22 M (4)	27.86	26	5	5	6.5	15	-	-	90	30	0.9
FS 32 M	42.86	41	6	6	6.5	15	-	-	90	30	1.8
FS 35 M ⁽⁴⁾	47.86	46	8	6	9	20	-	-	90	30	2.6
FS 40 M	63.58	61	8	6	9	20	-	-	90	30	3.7
FS 47 M ⁽⁴⁾	78.58	76	10	6	11.5	20	-	-	90	30	5.6
FS 52 M	89.78	87	12	8	13.5	20	-	-	90	30	7.7
FS 62 M	104.76	102	15	8	13.5	20	-	-	90	30	11.2
FS 72 M	122.98	120	18	10	17.5	30	30	60	90	30	15.8
			Maximum	n length of si	ingle guide e	lement L = 4	020 mm (1))			

¹⁾ Longer rails are supplied in sections with ground butt joints - 2) Weight without holes - 3) Standard layout without pin holes (pin holes only on request)

Rails finishing

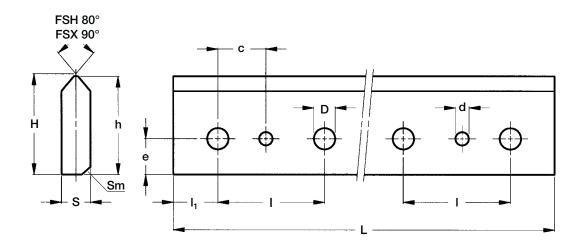
- drawn, induction hardened and ground profile (M)
- induction hardening on raceways only

Hole layout

- holes according to catalogue (SB)
- finishes to drawing (NZ)
- without holes (NF)

Optional features

- stainless steel (NX) (4)
- ground one end (R)
- ground both ends (RR)
- chemical Nickel-plating (NW)
- pin holes (3)


Example of standard designation: FS 40 M 2760 SB

⁴⁾ Size 22, 35 and 47 available in stainless steel (NX)

					Dimension	ns (mm)			I I ₁ 90 30 90 30 90 30 90 30 90 30 90 30	Weight (2)	
Type	H ± 0.1	h ± 0.1	S ± 0.1	Sm ⁽³⁾	d ⁽⁴⁾ + 0.05	D	c ⁽⁴⁾	е	1	l ₁	(kg/m)
FSH 22 MT	23.9	23	5.8	0.9x45°	5	6.5	15	9	90	30	1.0
FSH 32 MT	29.9	29	6.8	1.4x45°	6	6.5	15	11	90	30	1.5
FSH 40 MT	37.2	36	8.8	1.4x45°	6	9	20	16	90	30	2.4
FSH 52 MT	40.75	39.2	13	2x45°	8	13.5	20	17	90	30	3.7
FSH 62 MT	50.75	49.2	16	2x45°	8	13.5	20	17	90	30	5.7
FSH 72 MT	60.85	59.2	19	2x45°	10	17.5	30	20	90	30	8.2
FSX 90 MT	62.85	61	26.5	1.5x45°	10	13.5	30	22	90	30	11.6
			Maximur	n length of si	ngle guide e	element L =	6 000 mm ⁽	1)			

- 1) Longer rails are supplied in sections with ground butt joints 2) Weight without holes
- 3) Guides with chamfer will be supplied prior exhaustion of guides without chamfer in warehouse
- 4) Standard layout without pin holes (pin holes only on request)

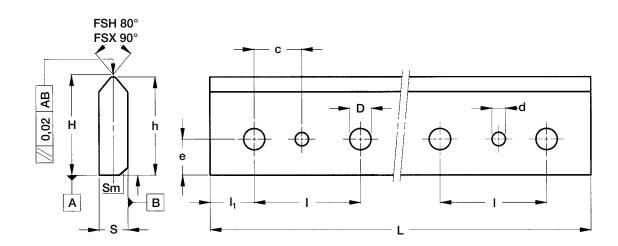
Rails finishing

- drawn, induction hardened and sandblasted tracks (MT)
- induction hardening on raceways and base only

Hole layout

- holes according to catalogue (SB)
- finishes to drawing (NZ)
- without holes (NF)

Optional features


- ground one end (R)
- ground both ends (RR)
- chemical Nickel-plating (NW)
- pin holes (4)

Example of standard designation: FSH 52 MT 5280 SB

					Dimensio	ons (mm)				I ₁ 30 30 30 30 30 30 30 30 30 30 30	Weight (2)
Type	H ± 0.05	h ± 0.1	S ± 0.05	Sm (3)	d ⁽⁴⁾ + 0.05	D	c ⁽⁴⁾	е	1	I ₁	(kg/m)
FSH 19 M	18.98	18.5	4.5	0.5x45°	4	6.5	15	8	90	30	0.6
FSH 22 M	22.93	22	5	0.2x45°	5	6.5	15	9	90	30	8.0
FSH 32 M	28.93	28	6	0.5x45°	6	6.5	15	11	90	30	1.2
FSH 40 M	36.29	35	8	0.5x45°	6	9	20	16	90	30	2.1
FSH 52 M	39.39	38	12	1x45°	8	13.5	20	17	90	30	3.4
FSH 62 M	49.38	48	15	1x45°	8	13.5	20	17	90	30	5.2
FSH 72 M	59.49	58	18	1x45°	10	17.5	30	20	90	30	7.6
FSX 90 M	61.79	60	26	0.5x45°	10	13.5	30	22	90	30	11
			Maximur	n length of s	ingle guide e	element L = 4	020 mm ⁽¹⁾				

- 1) Longer rails are supplied in sections with ground butt joints 2) Weight without holes
- 3) Guides with chamfer will be supplied prior exhaustion of guides without chamfer in warehouse
- 4) Standard layout without pin holes (pin holes only on request)

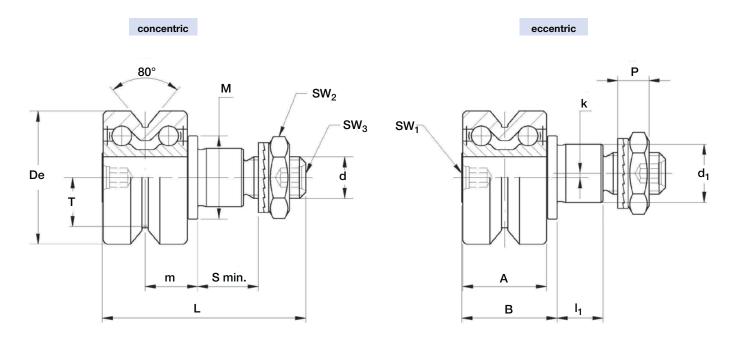
Rails finishing

- drawn, induction hardened and ground profile (\boldsymbol{M})
- induction hardening on raceways and base only

Hole layout

- holes according to catalogue (SB)
- finishes to drawing (NZ)
- without holes (NF)

Optional features


- ground one end (R)
- ground both ends ($\ensuremath{\mathbf{RR}}$)
- chemical Nickel-plating (NW)
- pin holes (4)

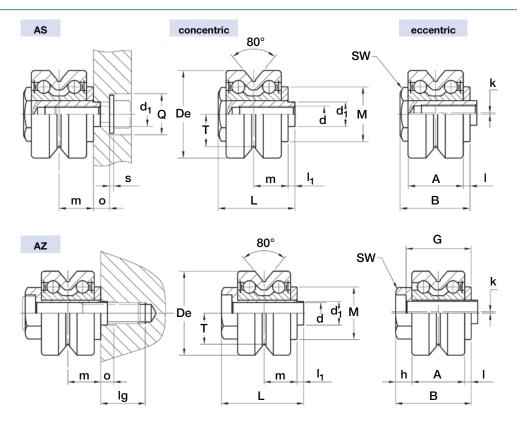
Example of standard designation: FSH 40 M 2760 SB

The second state of	- 6 41			-11-1-46	
The sides	or trie	race	are	Silgrilly	Convex

Ту	pe							Dime	ensions	(mm)							
concentric	eccentric	De	d ₁ ⁽¹⁾	d	Т	m	S _{min}	Р	L	Α	В	I ₁	М	SW ₁	SW ₂	SW ₃	k
FR 22 EU ⁽⁴⁾	FRR 22 EU ⁽⁴⁾	22	9	M 6 x 1	7.7	9.4	9	6.5	36.8	15	18	8	14	4	10	3	0.8
FR 32 EU ⁽⁴⁾	FRR 32 EU ⁽⁴⁾	32	14	M 10 x 1.25	11.8	12.6	12	8.5	48.9	20.2	22.9	11	20	4	17	4	1
FR 40 EU ⁽⁴⁾	FRR 40 EU ⁽⁴⁾	40	16	M 12 x 1.5	14.6	15.5	12	10.4	58.5	25	29.5	11	22	5	19	5	1
FR 52 EU	FRR 52 EU	52	21	M 16 x 1.5	19.1	19.8	15	11.4	69.5	32	36.5	14	28	6	24	6	1.5
FR 62 EU	FRR 62 EU	62	27	M 20 x 1.5	22.1	20.8	18.5	12.4	80	33.6	39	17.5	35	8	30	8	2

Ту	/pe	Dynamic load (N)	Limit (1	loads V)	Life coe	fficients	Torque wrench settings (2) (Nm)	Weight (g)
		C _w (3)	radial F _r	axial F _a	X	Υ	3 ()	(3)
FR 22 EU	FRR 22 EU	2 900	1 400	420	1	2	3	45
FR 32 EU	FRR 32 EU	5 800	2 000	800	1	1.9	20	125
FR 40 EU	FRR 40 EU	8 500	3 650	1 400	1	1.9	26	230
FR 52 EU	FRR 52 EU	11 700	8 500	3 000	1	1.9	64	510
FR 62 EU	FRR 62 EU	13 900	11 000	3 500	1	1.9	120	765

- 1) Housing bore tolerance: H7
- 2) The torque wrench settings are given for non-lubricated threads; for lubricated threads, multiply figure by 0.8
- 3) Cw basic load for 100 km
- 4) FR/R 22, 32, 40 are available in stainless steel (NX)


The guide rollers are complete with self-locking washers and hexagonal nut (DIN439B) for fitting Pressure angle α for load calculation: 40° NBR seals RS type

Guide Rollers FR..EU AS, FR..EU AZ

Ту	/pe									Dime	nsions	(mm)								
concentric	eccentric	De	d1 ⁽¹⁾	d ⁽²⁾	Т	m	L	Α	В	l ₁	I	h	М	sw	G	0	Q	Ig (7)	s	k
FR 22 EU AS(6)	FRR 22 EU AS(6)	22	6	M 5	7.7	9.4	21.8	15	19.8	2	1.9	-	14	10	-	4.5	10	-	0	0.5
FR 32 EU AS(6)	FRR 32 EU AS(6)	32	9	M 6	11.8	12.6	28.1	20.2	25.6	2.5	2.5	-	20	17	-	6	15	-	1.5 (4)	0.5
FR 40 EU AS(6)	FRR 40 EU AS(6)	40	11	M 8	14.6	15.5	33.5	25	31	2.5	3	-	22	22	-	6.5	20	-	2 (4)	1
FR 52 EU AS	FRR 52 EU AS	52	16	M10	19.1	19.8	43.2	32	40	3.2	3.8	-	28	27	-	8	24	-	2.5(4)	1.5
FR 62 EU AS	FRR 62 EU AS	62	19	M12	22.1	20.8	46	33.6	41.8	4.2	4	-	35	30	-	9	26	-	2.5(5)	1.5
FR 22 EU AZ(6)	FRR 22 EU AZ(6)	22	6	5.1	7.7	9.4	23.9	15	21.9	2	1.9	5	14	11	18.9	4	-	13	-	0.5
FR 32 EU AZ(6)	FRR 32 EU AZ(6)	32	9	8.1	11.8	12.6	31.4	20.2	28.9	2.5	2.5	6.2	20	17	24.9	5	-	17	-	0.5
FR 40 EU AZ(6)	FRR 40 EU AZ(6)	40	11	10.1	14.6	15.5	38	25	35.5	2.5	3	7.5	22	22	30.5	5	-	26	-	8.0
FR 52 EU AZ	FRR 52 EU AZ	52	16	14.1	19.1	19.8	49.5	32	46.3	3.2	3.8	10.5	28	27	39.3	5.5	-	27	-	1.5
FR 62 EU AZ	FRR 62 EU AZ	62	19	16.1	22.1	20.8	54.5	33.6	50.3	4.2	4	12.7	35	32	42.3	6.5	-	30	-	1.5

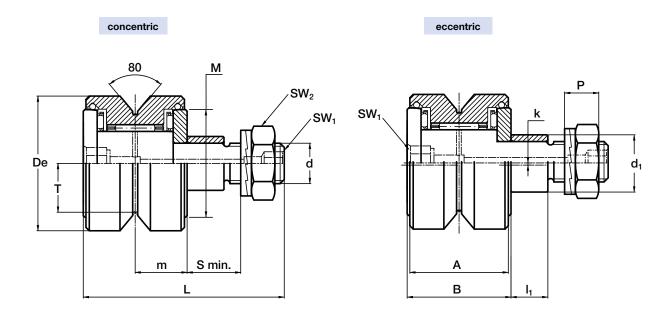
G	Guide roller size	Dynamic load (N)	Limit lo	ads (N)	Life coe	fficients	Weight AS	Weight AZ	On request for AZ screw
		Cw (3)	radial F _r	axial F _a	X	Y	(g)	(g)	DIN7984
	22	2 900	470	210	1	2	33	31	M 5 x 30
	32	5 800	1 590	710	1	1.9	95	93	M 8 x 40
	40	8 500	2 120	940	1	1.9	173	173	M10 x 50
	52	11 700	5 830	2 560	1	1.9	374	365	M14 x 60
	62	13 900	9 200	3 500	1	1.9	582	587	M16 x 65

- 1) Housing bore tolerance: H7
- 2) Safety threads SPIRALOCK
- 3) Cw basic load for 100 km
- 4) Guide roller with washers DIN134 without screw DIN7984 or DIN912
- 5) Guide roller with washers DIN125 without screw DIN7984 or DIN912
- 6) FR/R 22, 32, 40 AS and AZ are available in stainless steel (NX)

7) AZ: minimum length of the thread engaged steel = 1 x d - cast iron = 1.25 x d

aluminium = $2 \times d$

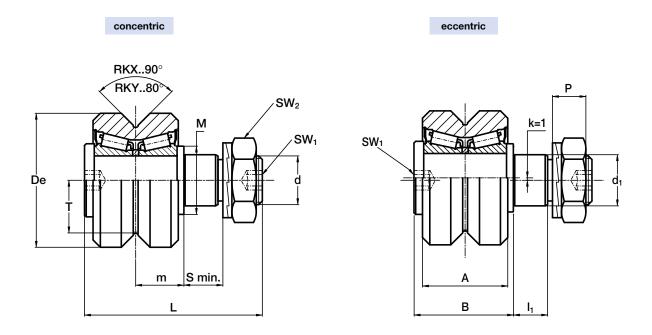
AS screws length: min = d+o+s; max = m+4+o+s


NBR seals RS type

Pressure angle α for load calculation: 40°

The sides of the race are slightly convex

T	ype							Dimensi	ons (mi	m)						
concentric	eccentric	De	d ₁ ⁽¹⁾	d	Т	m	S min.	Р	L	Α	В	l ₁	М	SW ₁	SW ₂	k
FRN 19 EI ⁽⁸⁾	FRNR 19 EI ⁽⁸⁾	19	7	M 5 x 0.8	7	8.8	6.5	4.2	34	17	18	5.5	14	(10)	8	0.5
FRN 22 EI ⁽⁸⁾	FRNR 22 EI (8)	22	9	M 6 x 1	7.7	9.4	9	6.5	39	18.2	20	8	16.5	(10)	10	0.5
FRN 32 EI ⁽⁸⁾	FRNR 32 EI ⁽⁸⁾	32	14	M 10 x 1.25	11.8	12.6	12	10.4	52	24.2	26	11	25	4	16	1
FRN 40 EI ⁽⁹⁾	FRNR 40 EI ⁽⁹⁾	40	16	M 12 x 1.5	14.6	15.5	12	11.4	60	29.4	31	11	32	8	19	1

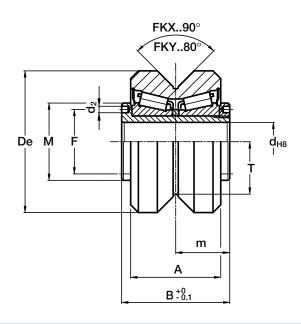

Ту	pe	Dynam (f	ic loads N)	Limit (۱	loads N)	Torque wrench ⁽²⁾ settings	Weight (g)
		C _{wr} ⁽⁴⁾	C _{wa} ⁽⁴⁾	radial F _r	axial F _a	(Nm)	νο,
FRN 19 EI	FRNR 19 EI	1 800	600	490	270	1.8	35
FRN 22 EI	FRNR 22 EI	3 280	800	590	290	3	53
FRN 32 EI	FRNR 32 EI	5 600	2 100	2 030	950	20	160
FRN 40 EI	FRNR 40 EI	12 300	2 600	2 800	1 350	26	290

- 1) Housing bore tolerance: H7
- 2) The torque wrench settings are given for non-lubricated threads; for lubricated threads, multiply figure by 0.8
- 3) On request, the guide rollers can be supplied with external parts in stainless steel (suffix NX). Internal rolling elements in standard bearing steel.
- 4) Cw basic load for 100 km
- 5) The guide rollers are complete with self-locking washers and hexagonal nut (DIN 439B) for fitting
- 6) Pressure angle α for load calculation: 40°
- 7) Standard Viton seals to fit temperature up to 120°C
- 8) Lubrication hole only on head side
- 9) Lubrication hole also on stud side
- 10) For size 19 and 22: screw driver slot on the head and hexagonal socket at the threaded end of the stud

Guide rollers RKY.., RKX..

The sides of the race are convex with radius R = 400.

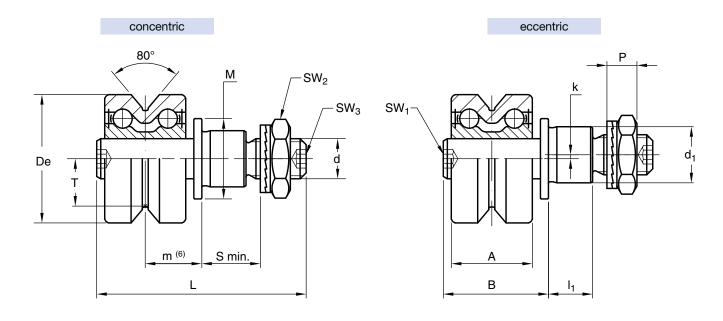
Ту	rpe						D	imensio	ns (mm	1)						
concentric	eccentric	De	d ₁ ⁽¹⁾	d	Т	m	S min.	Р	L	Α	В	l ₁	М	SW ₁	SW ₂	k
RKY 52	RKYR 52	52	21	M 20 x 1.5	19.1	19.8	15	13.4	73	35	41	14	28	8	30	1
RKY 62	RKYR 62	62	27	M 24 x 1.5	22.1	20.8	19	15.4	83	37	44	18	35	10	36	1
RKY 72	RKYR 72	72	36	M 30 x 1.5	25.5	27	19	21.6	100	45	55	18	44	12	46	1
RKX 90C	RKXR 90C	90	38	M 36 x 1.5	32.5	30	24	24.6	115	56 ⁽⁶⁾	62	23	50	14	55	1
RKX 110C	RKXR 110C	110	42	M 36 x 1.5	39.5	34	33	24.6	135	63(6)	70	32	56	14	55	1


Ту	pe	Dynamic load (N)	Limit (N	loads N)	Life coe	efficients	Torque wrench (2) settings	Weight (kg)
		C _w (5)	radial F _r	axial F _a	Х	Υ	(Nm)	(-9)
RKY 52	RKYR 52	41 000	11 900	4 800	1	3.7	80	0.6
RKY 62	RKYR 62	46 000	19 000	8 300	1	3.5	160	0.9
RKY 72	RKYR 72	66 000	30 000	12 300	1	3.2	300	1.6
RKX 90C	RKXR 90C	130 000	41 000	15 300	1	3.8	450	2.8
RKX 110C	RKXR 110C	185 000	55 000	20 900	1	3.9	450	4.9

- 1) Housing bore tolerance: H7
- 2) The torque wrench settings are given for non-lubricated threads; for lubricated threads, multiply figure by 0.8
- 3) Standard seals: material NBR, RS type
- 4) On request, the guide rollers can be supplied with external parts in stainless steel (suffix **NX**) and with Viton seals for operating temperatures up to 120°C (suffix **V**, up to dimension RKX 90 C included). Internal rolling elements in standard bearing steel
- 5) Cw basic load for 100 km
- 6) Dimensions relating to the stainless-steel rollers (suffix NX)
- 7) The guide rollers are complete with self-locking washers and hexagonal nut (DIN 439B) for fitting
- 8) Pressure angle α for load calculation: guide rollers RKY 40° guide rollers RKX 45°

The sides of the race are convex.

Time				D	imensions (mr	n)				Weight
Туре	De	d	Т	m	Α	В	F	d ₂	M	(kg)
FKY 52C	52	15	19.1	21	35	42	25	2.5	30	0.5
FKY 62C	62	20	22.1	22.5	37	45	29	3	35	0.6
FKY 72C	72	25	25.5	28	45	56	37	4	44	1.2
FKX 90C	90	28	32.5	32	56(2)	64	42	4	49	2.3
FKX 110C	110	35	39.5	36	63(2)	72	52	4	59	3.9


Туре	Dynamic load (N)		loads N)	Life coe	officients
	C _w (3)	radial	axial F _a	X	Υ
FKY 52C	41 000	11 900	4 800	1	3.7
FKY 62C	46 000	19 000	8 300	1	3.5
FKY 72C	66 000	30 000	12 300	1	3.2
FKX 90C	130 000	41 000	15 300	1	3.8
FKX 110C	185 000	55 000	20 900	1	3.9

- 1) On request, the guide rollers can be supplied with external parts in stainless steel (suffix **NX**) and with Viton seals for operating temperatures up to 120°C (suffix **V**, up to dimension FKX 90 C included). Internal rolling elements in standard bearing steel
- 2) Dimensions relating to the stainless-steel rollers (suffix NX)
- 3) Cw basic load for 100 km
- 4) To prevent rotation between roller and shaft a pin can be fitted in one of the holes "d2" positioned in the side flange
- 5) Pressure angle α for load calculation: guide rollers FKY 40° guide rollers FKX 45°
- 6) Standard seals: material NBR, RS type

The	race	wavs	are	slightly	/ convex
1110	lacc	ways	aic	Silgitti	, , , , , , , , , , , , , , , , , , , ,

Т	ype	Dimensions (mm)																
concentric	eccentric	De	d ₁ (1)	d	Т	S _{min}	Р	L	Α	В	l ₁	М	m ⁽⁶⁾ min	m ⁽⁶⁾ max	SW ₁	SW ₂	SW ₃	k
FRL 22 EU ⁽⁵⁾	FRLR 22 EU (5)	22	9	M6 x 1	7.7	9	6.5	39.3	15	20.5	8	14	9	13	4	10	3	8.0
FRL 32 EU (5)	FRLR 32 EU (5)	32	14	M10 x 1.25	11.8	12	8.5	52.2	20.2	26.2	11	20	12.1	16.1	4	17	4	1
FRL 40 EU (5)	FRLR 40 EU (5)	40	16	M12 x 1.5	14.6	12	10.4	61.4	25	32.4	11	22	14.9	19.9	5	19	5	1
FRL 52 EU	FRLR 52 EU	52	21	M16 x 1.5	19.1	15	11.4	74	32	41	14	28	19	25	6	24	6	1.5
FRL 62 EU	FRLR 62 EU	62	27	M20 x 1.5	22.1	18.5	12.4	83.6	33.6	42.6	17.5	35	19.8	25.8	8	30	8	2

	Туре	Dynamic load (N)	Limit load (N)	Limit load Inox version (N) NX	Torque wrench setting (2)	Weight (g) ⁽³⁾
		C _w ⁽⁴⁾	radial F _r	radial F _r	(Nm)	(0)
FRL 22 EU	FRLR 22 EU	2900	1050	980	3	46
FRL 32 EU	FRLR 32 EU	5800	1700	1550	20	127
FRL 40 EU	FRLR 40 EU	8500	3000	2750	26	233
FRL 52 EU	FRLR 52 EU	11700	7600	-	64	520
FRL 62 EU	FRLR 62 EU	13900	11000	-	120	776

- 1) Housing bore tolerance: H7
- 2) The torque wrench settings are given for non-lubricated threads; for lubricated threads multiply figure by 0.8
- 3) Weight without fittings
- 4) Cw = Basic load for 100 Km 5) Dimensions for stainless steel (**NX**) version
- 6) To ensure a safety and proper functioning the dimension m must not be higher than m max

Standard seals: material NBR, RS type

Guide rollers include self-locking washers and hexagonal nut (DIN 439B)

Pressure angle α for load calculation: 40°

T	ype		Dimensions (mm)																
concentric	eccentric	De	d ₁ ⁽¹⁾	d	Т	m min ⁽⁵⁾	m max ⁽⁵⁾	S _{min}	R	Р	L	Α	В	С	l ₁	М	SW ₁	SW ₂	k
RKYL 52	RKYLR 52	52	21	M 20 x 1.5	19.1	24	30	15	15	13.4	83	35	42	51	14.0	30	8	30	1
RKYL 62	RKYLR 62	62	27	M 24 x 1.5	22.1	25.5	31.5	19	20	15.4	93	37	45	54	18	35	10	36	1
RKYL 72	RKYLR 72	72	36	M 30 x 1.5	25.5	31	37	19	25	21.6	110	45	56	65	18	44	12	46	1
RKXL 90	RKXLR 90	90	38	M 36 x 1.5	32.5	36	43	24	28	24.6	128	53 56 ⁴⁾	64	75	23	49	14	55	1
RKXL 110	RKXLR 110	110	42	M 36 x 1.5	39.5	40	47	33	35	24.6	148	60 _{63⁴⁾}	72	83	32	59	14	55	1

Т	ype	Dynamic load (N)	Limit load (N)	Torque wrench setting	Weight (g)
		Cw ³⁾	radial F _r	(Nm) ²⁾	(3)
RKYL 52	RKYLR 52	41 000	3 050	80	630
RKYL 62	RKYLR 62	46 000	6 850	160	950
RKYL 72	RKYLR 72	66 000	11 200	300	1 680
RKXL 90	RKXLR 90	130 000	13 800	450	2 900
RKXL 110	RKXLR 110	185 000	24 000	450	5 000

1) Housing bore tollerance: H7

2) The torque wrench settings are given for non-lubricated threads; for lubricated threads multiply figure by 0.8

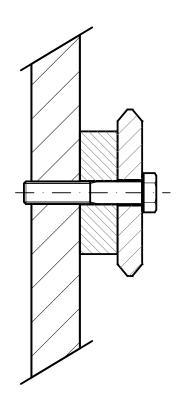
3) Cw = Basic load for 100 Km

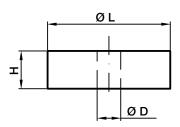
4) Dimensions for stainless steel (**NX**) version

5) To ensure a safety and proper functioning the dimension m must not be higher than m max

On request, the guide rollers can be supplied with external parts in stainless steel (suffix **NX**). Internal rolling elements in standard bearing steel.

Standard seals: material NBR, RS type


On request, the guide rollers can be supplied with viton seals for operating temperatures up to 120° C (suffix V, not available for RKXL 110)


Pressure angle α for load calculation: 40°

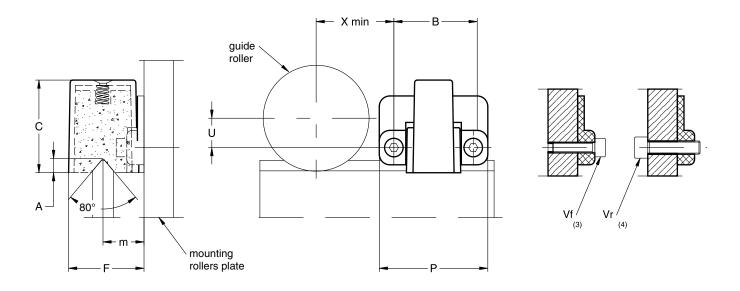
Spacers for FS and FSH

Timo		Dimensions (mm)		Suggested combinations
Type	ØL	ØD	Н	Suggested combinations
DIST FS19	12	6.5	10	FS19, FSH19
DIST FS22	15	6.5	10	FS22, FSH22, FSR22
DIST FS32	30	6.5	15	FS32
DIST FS35	35	8.5	15	FS35, FSR35
DIST FS40	50	8.5	15	FS40
DIST FS47	60	10.5	20	FS47, FSR47
DIST FS52	65	12.5	20	FS52
DIST FS62	80	12.5	20	FS62
DIST FS72	35	16.5	20	FS72, FSH72
DIST FSH32	20	6.5	15	FSH32
DIST FSH40	25	8.5	15	FSH40
DIST FSH52	25	12.5	20	FSH52
DIST FSH62	25	12.5	20	FSH62
DIST FSX90	43	12.5	30	FSX90

The spacers, mounted between the guide and the supporting structure, guarantee adequate distance for the sliding of the rollers. The spacers DIST are designed for guides FS and FSH of V-Line and guides FSR of Multi-Motion-Line.

Finishing

- anodized aluminium

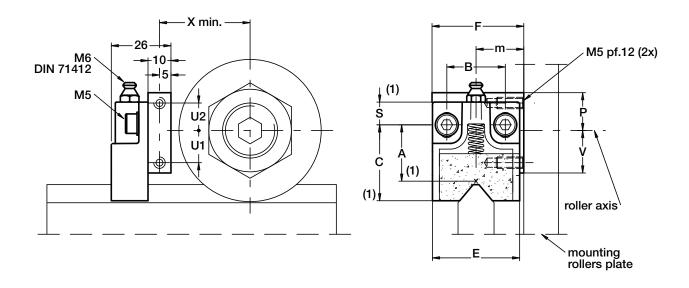

Optional features

- steel

Lubricator LUBY for FS guide rollers up to size 40

Time				I	Dimensio	on (mm)				Weight	Currented combinations
Туре	Х	U	В	F	m	Α	С	Р	Vf	Vr	(g)	Suggested combinations
LUBY 19	15	1.5	25	15.6	8.8	2.5	19	32.5	M3x12	M4	10	FR 19
LUBY 22	16.5	3	25	16.8	9.4	3.3	22	32.5	M3x12	M4	10	FR 22
LUBY 32	21.5	8	25	23.2	12.6	4.2	30	32.5	M3x12	M4	15	FR 32
LUBY 40	27.5	10.5	30	28.5	15.5	5.4	35	41	M4x12	M5	30	FR 40

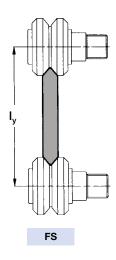
- 1) The lubricator is supplied with the felt already lubricated. The lubricant has a mineral oil base
- 2) At the mounting, insert the screws inside the rollers plate, without tighten them, adjust the height of the plastic part in order to put it in contact with the raceways and then block it
- 3) The screws Vf for the frontal mounting are included in the packaging. Arrange two thread holes for dimension Vf in the mounting rollers plate
- 4) The screws for the mounting on the nut side of the roller are not included in the packaging. Arrange on the mounting rollers plate the holes in order to insert te screws Vr

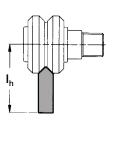

Optional features

- felt without lubricant (D)

Lubricator LUBY, LUBX for FS guide rollers size 52 and higher

Time						Dimensio	ons (mm	1)					Weight	Cuganated combinations
Type	Х	U1	U2	F	m	В	S	С	Α	Е	V	Р	(g)	Suggested combinations
LUBY 52	33.5	12	14	40	19.8	25.5	10	34	24.5	38	16.5	18.5	65	RKY 52 RKYR 52 FKY 52 FR 52 EU FRR 52 EUAS/AZ
LUBY 62	38.5	14	12	40	20.8	25.5	10	34	24.5	38	18.5	16.5	65	RKY 62 RKYR 62 FKY 62 FR 62 EU FRR 62 EUAS/AZ
LUBY 72	43.5	19	11	50	27	25.5	10	40	29	44	24	16	85	RKY 72 RKYR 72 FKY 72
LUBX 90	52.5	21	9	60	30	30	16.5	45.5	33.5	58	31	19	140	RKX 90C RKXR 90C FKX 90C
LUBX 110	62.5	30	0	63	34	30	16.5	45.5	33.5	58	40	10	140	RKX 110C RKXR 110C FKX 110C


- 1) The dimension of the plastic part refers to the centre of the regulation slot. The regulation slot allows a translation of +/- 3 mm
- 2) The lubricator is supplied with the felt already lubricated. The lubricant has a mineral oil base
- 3) During the mounting fix the aluminium support to the rollers plate, adjust the height of the plastic part in order to put it in contact with the raceways and than block it in that position with the M5 screws


Optional features

- felt without lubricant (D)

Guide rollers combination

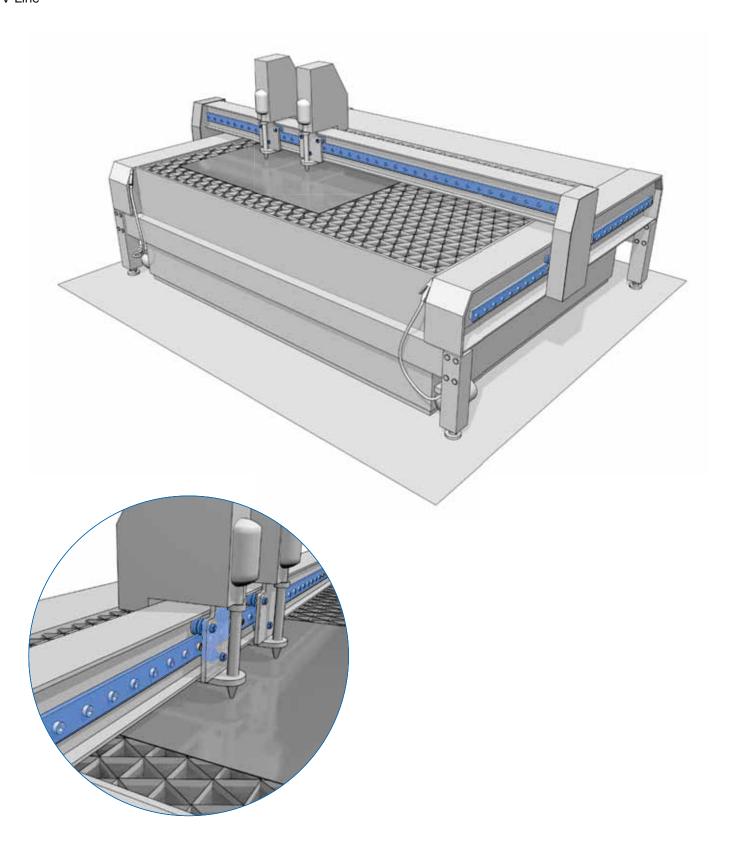
FSH / FSX

Guide rollers FR...EU, FR...EU AS, FR...EU AZ, FRN...EI, RKY, RKX, FKY, FRL..EU, RKXL, RKYL

	1 ()			Gui	de roller	size		
	l _y (mm)	19	22	32	40	52	62	72
	FS 19 M	35	36.4					
	FS 22 M	41.9	43.3					
Σ	FS 32 M			66.5				
FSM	FS 35 M			71.5	*77			
	FS 40 M				92.8			
	FS 47 M				*107.8	116.8		
	FS 52 M					128	*134	
	FS 62 M					143	149	
	FS 72 M						*167.2	174

	I ()				Guid	le roller	size			
	I _h (mm)	19	22	32	40	52	62	72	90	110
Ξ	FSH 19 M	26	26.7							
Š.	FSH 22 M	*29.9	30.6							
Ţ,	FSH 32 M			40.7						
≥ :	FSH 40 M			*48	50.9					
E.	FSH 52 M				*54	58.5				
_	FSH 62 M					*68.5	71.5			
	FSH 72 M						*81.6	85		
	FSX 90 M								94.3	101.3
FSHM, FSXM	FSH 52 M FSH 62 M FSH 72 M			*48				85	94.3	1

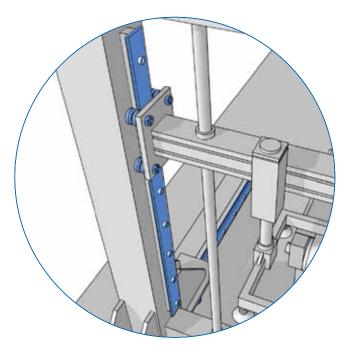
	l _y (mm)	Guide roller size									
		19	22	32	40	52	62	72			
	FS 19 MT	36.2	37.6								
	FS 22 MT		44.2								
FSMT	FS 32 MT			67.4							
SI	FS 35 MT			72.4	*78						
щ	FS 40 MT				93.7						
	FS 47 MT				*109.3	118.3					
	FS 52 MT					129.5	*135.5				
	FS 62 MT					144.2	150.2				
	FS 72 MT						*168.8	175.6			


Į	I _h (mm)	Guide roller size										
		19	22	32	40	52	62	72	90	110		
FSHMT, FSXMT	FSH 22 MT	30.9	31.6									
S	FSH 32 MT			41.7								
Ë	FSH 40 MT			*49	51.8							
2	FSH 52 MT				*55.4	59.9						
访	FSH 62 MT					*69.9	72.9					
	FSH 72 MT						*83	86.4				
	FSX 90 MT								95.3	102.3		

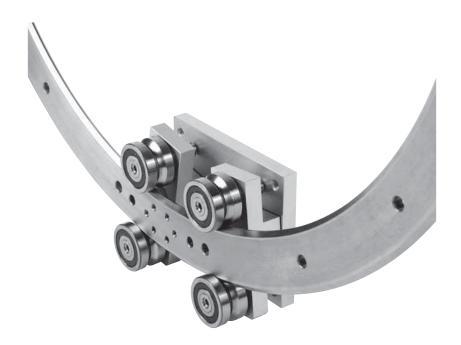
^{*} possible combination

Mounting examples

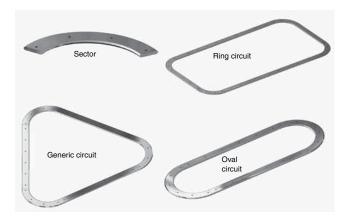
Waterjet cutting machine V-Line



Mounting examples


Portable loader for steel sheet V-Line Heavy-Line

FSR System



Circular systems

Nadella proposes several circular rails based on the FS family of profiles. The rails can be used as an entire circumference, or single sectors, or joined together with straight pieces of rail in order to obtain oval or ring circuits.

Guide

The rails are steel, induction hardened on the raceways, with the same section dimensions as straight FS..M rails. In the circuits the rails are joined together with alignment blocks that allow easy precise mounting.

All the pieces of the circuit are supplied appropriately marked in order to avoid mistakes during joining.

For protection against corrosion Nadella proposes nickel plating (option NW) for both straight and circular pieces. On request, guides can be supplied in stainless steel (NX option).

In addition to the standard dimensions in the table it is possible to realize rings with different sections or radii in order to satisfy specific demands.

Guide rollers

Any guide rollers of the FS family of products can be used in combination with the circular rails.

Carriage

Carriages for circular rails can be realized with guide rollers in fixed position or mounted on steering arms.

Carriages with guide rollers in fixed positions

You can set up the distance between the centres of the guide rollers of a carriage with fixed guide rollers in order to obtain clearance-free running both on the straight and on the circular stretch of a circuit. The resulting carriage, normally a simple table with four holes for the housing of the guide rollers, will be simple and compact; there are, however, some contraindications:

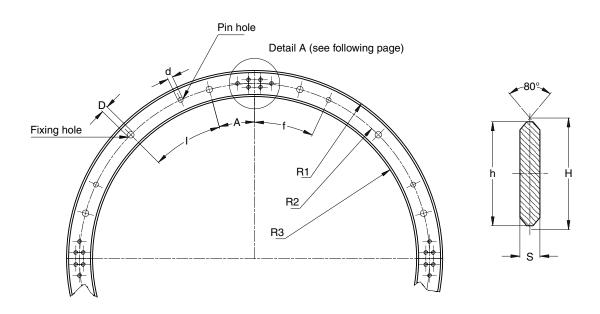
- In the passage from the straight stretch to the circular one (and vice versa), when two guide rollers are

engaged on the straight portion and two on the circular one, there will be clearance between the carriage and the rail. The extent of the clearance depends on the dimensions of the rail, of the roller guides and of the carriage. Because of this clearance it is not possible to have an accurate positioning of the carriage during the passage between straight and circular stretch and therefore, in fast application, there will be vibration, noise and overload of the roller guides.

 This kind of carriages, with fixed guide rollers, can be used only for a single specific radius throughout the circuit. To use a carriage with fixed guide roller positions you can't have circular stretches with different radii.

To define the design for holes of the fixed rollers please contact the Nadella Technical Service.

Steering Carriages


The contraindications for the carriage with guide rollers in fixed positions can be resolved by using the steering carriage. Guide rollers are mounted in pairs on steering arms that are free to rotate in order to always be transversal to the rail in every point of the circuit. The carriage won't have clearance at any point in the circuit improving transition area accuracy and reduce running noise.

The studs of the steering carriage are fitted with needle bearings and seals for lubricant retention and protection. The tightening of the stud is obtained by the full tightening of the nut, and guarantees the best locking.

Circular rails FSR..M

Туре	А	I	f	d H7	D	R1*	R2*	R3*	n° fixing holes/360°	n° pin holes/360°	h	Н	S
FSR22M-075	22.5°	45°	45°	5	6.5	88	75	62	8	4	26	27.86	5
FSR22M-125	15°	30°	25°	5	6.5	138	125	112	12	8	26	27.86	5
FSR22M-175	15°	30°	25°	5	6.5	188	175	162	12	8	26	27.86	5
FSR35M-225	11.25°	22.5°	7.5°	8	9	248	225	202	16	8	46	47.86	8
FSR35M-300	11.25°	22.5°	7.5°	8	9	323	300	277	16	8	46	47.86	8
FSR47M-400	9°	18°	18°	10	11.5	438	400	362	20	8	76	78.58	10
FSR47M-500	9°	18°	18°	10	11.5	538	500	462	20	8	76	78.58	10

^{*} R1, R2, R3 are radius

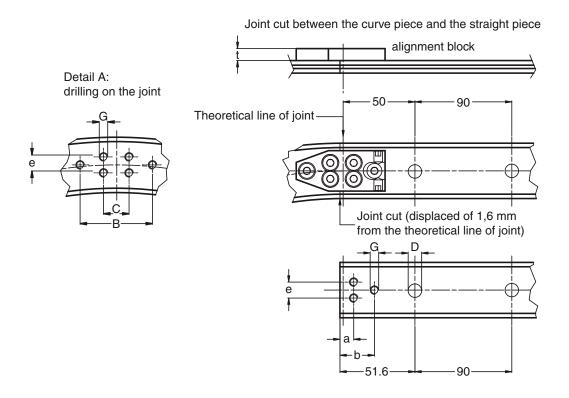
Rails finishing

- stee
- induction hardened on the raceways

Hole layout

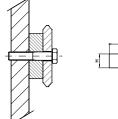
- holes according to catalogue (SB)
- finishes to drawing (NZ)

Optional features


- stainless steel (NX)
- nickel plating (NW)
- spacers for rails FS and FSH (page 59)

Example of standard designation: FSR35M-225-180

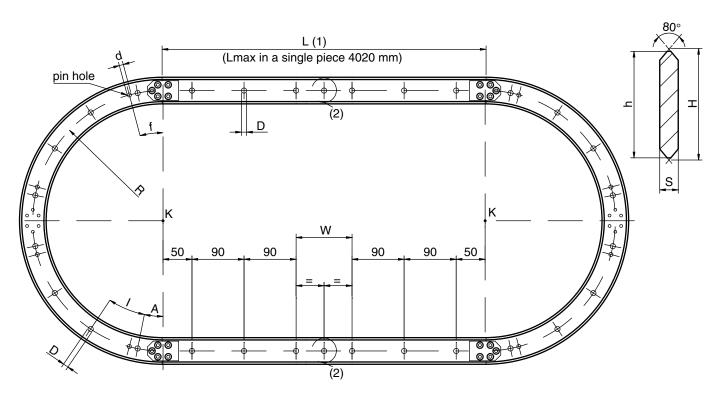
Circular rail sector FSR35M, radius R2 225 mm, sector angle 180°


Alignment blocks for FSR

Туре					Suggested				
	С	В	е	G	D	а	b	t	combination
FSR22M-075	12	34	7.5	M4	6.5	7.6	18.6	5.8	FR22EU FRN22EI
FSR22M-125	12	34	7.5	M4	6.5	7.6	18.6	5.8	FR22EU FRN22EI
FSR22M-175	12	34	7.5	M4	6.5	7.6	18.6	5.8	FR22EU FRN22EI
FSR35M-225	18	38	20	M6	9	10.6	19.6	8	FR32EU FRN32EI FR40EU FRN40EI
FSR35M-300	18	38	20	M6	9	10.6	19.6	8	FR32EU FRN32EI FR40EU FRN40EI
FSR47M-400	18	58	43	M6	11.5	8.6	18.1	9	FR40EU FRN40EI FR52EU RKY52
FSR47M-500	18	58	43	M6	11.5	8.6	18.1	9	FR40EU FRN40EI FR52EU RKY52

The joint cut is displaced of 1.6 mm from the theoretical line of joint. The alignment block allows an easy mounting of the joint.

Spacers for FSR



Spacers **DIST FS** can be used to mount the rails FSR (spacers for rails **FS** and **FSH** page 59)

Oval circuit FSRO

	Dimensions (mm)									
Туре	Radius R	D	А	1	d H7	f	S	h	Н	
FSRO22M-075	75	6.5	22.5°	45°	5	45°	5	26	27.86	
FSRO22M-125	125	6.5	15°	30°	5	25°	5	26	27.86	
FSRO22M-175	175	6.5	15°	30°	5	25°	5	26	27.86	
FSRO35M-225	225	9	11.25°	22.5°	8	7.5°	8	46	47.86	
FSRO35M-300	300	9	11.25°	22.5°	8	7.5°	8	46	47.86	
FSRO47M-400	400	11.5	9°	18°	10	18°	10	76	78.58	
FSRO47M-500	500	11.5	9°	18°	10	18°	10	76	78.58	

The oval circuit is composed by: two sectors of circular rails (180° with center in K) and two straight pieces of rails. The circuit is supplied complete of alignment blocks (with the proper screws), and all the pieces are marked in order to obtain the correct sequence during the mounting.

(1) The length of the straight pieces is higher than the distance between the centers K (1.6 mm x 2) in order to cover the thickness of rail lost during the cutting of the circular sectors (for more details about joints see page 68).

Standard hole layout (SB) for the straight rails:

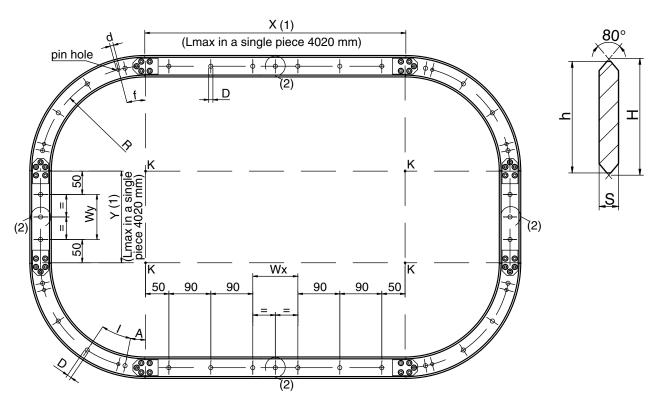
- first and last hole of 50 mm, starting from the centers K;
- hole pitch 90 mm;
- central hole (2) only if the last hole pitch W is higher than 60 mm.

Rails finishing

- circular rail FSR...M see page 67
- guide rail FS...M see page 49
- aligment blocks for FSR see pag 68

Hole layout

- standard holes according to catalogue (SB)
- finishes to drawing (NZ)


Optional features

- stainless steel (NX)
- nickel plating (NW)

Example of standard designation: **FSRO35M-225-2000 SB** Oval circuit, size 35, radius 225 mm, distance between the centers K equal to 2000 mm (1), standard holes.

Ring circuit FSRQ

	Dimensions (mm)									
Туре	Radius R	D	А	I	d H7	f	S	h	Н	
FSRQ22M-075	75	6.5	22.5°	45°	5	45°	5	26	27.86	
FSRQ22M-125	125	6.5	15°	30°	5	25°	5	26	27.86	
FSRQ22M-175	175	6.5	15°	30°	5	25°	5	26	27.86	
FSRQ35M-225	225	9	11.25°	22.5°	8	7.5°	8	46	47.86	
FSRQ35M-300	300	9	11.25°	22.5°	8	7.5°	8	46	47.86	
FSRQ47M-400	400	11.5	9°	18°	10	18°	10	76	78.58	
FSRQ47M-500	500	11.5	9°	18°	10	18°	10	76	78.58	

The ring circuit is composed by: four sectors of circular rails (90° with center in K) and four straight pieces of rails. The circuit is supplied complete of alignment blocks (with the proper screws), and all the pieces are marked in order to obtain the correct sequence during the mounting

(1) The length of the straight pieces is higher than the distance between the centers K (1,6 mm x 2) in order to cover the thickness of rail lost during the cutting of the circular sectors (for more details about joints see page 68).

Standard hole layout (SB) for the straight rails:

- first and last hole at 50 mm, starting from the centers K;
- hole pitch 90 mm;
- central hole (2) only if the last hole pitch (Wx in horizontal and Wy in vertical) is higher than 60 mm.

Rails finishing

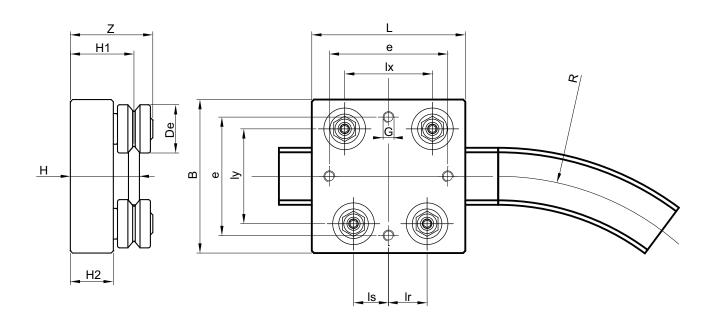
- circular rail FSR...M see page 67
- guide rail FS...M see page 49
- aligment blocks for FSR see pag 68

Hole layout

- standard holes according to catalogue (SB)
- finishes to drawing (NZ)

Optional features

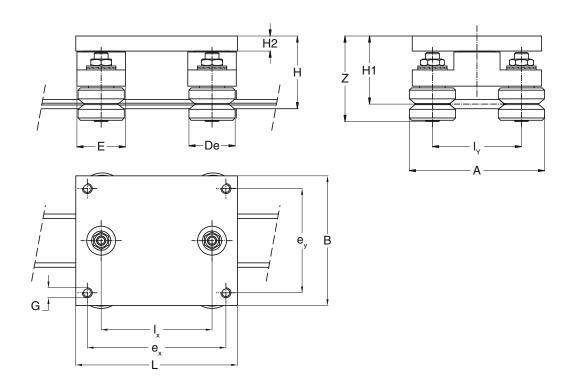
- stainless steel (NX)
- nickel plating (NW)


Example of standard designation: **FSRQ35M-225-2000-1000/SB** Ring circuit, size 35, radius 225 mm, horizontal distance between the centers K equal to 2000 mm (1), vertical distance between the centers K equal to 1000 mm (1), standard holes.

Multi-Motion-Line

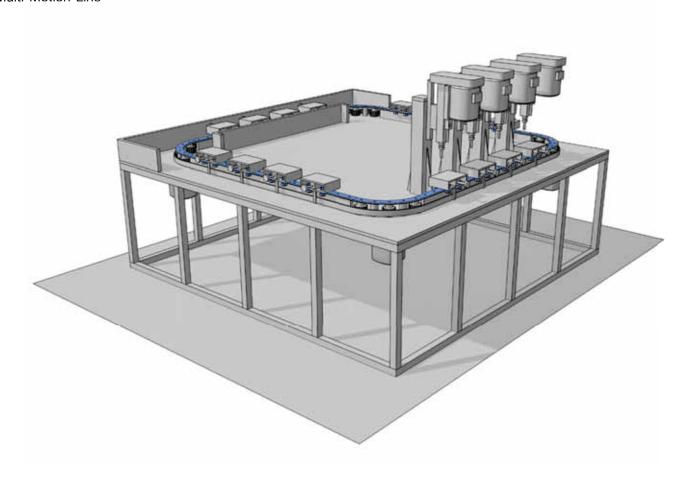
Carriages with Fixed guide rollers T4R..

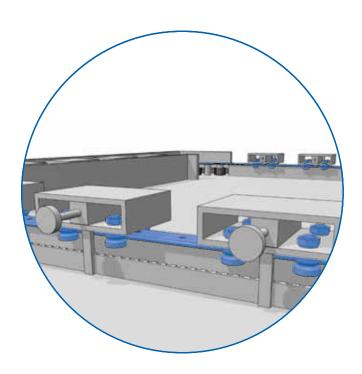
T						D	imensi	ons (mn	n)						Weight	Suggested
Type	De	R	L	В	е	G	l _x	Is	l _r	l _y	Н	H ₁	H ₂	Z	(kg)	combination
T4R 075 FR22EU	22	75	70	70	54	M5	40	14	15.6	43.3	31.5	29	19.6	38	0.40	FSR22M 075
T4R 125 FR22EU	22	125	70	70	54	M5	40	16	17.6	43.3	31.5	29	19.6	38	0.40	FSR22M 125
T4R 175 FR22EU	22	175	70	70	54	M5	40	16.9	18.5	43.3	31.5	29	19.6	38	0.40	FSR22M 175
T4R 225 FR32EU	32	225	110	110	90	M8	70	28.8	30.8	71.5	44	40	27.4	51	1.22	FSR35M 225
T4R 225 FR40EU	40	225	120	120	100	M8	75	30.5	32.5	77	49	45	29.5	60	1.90	FSR35M 225
T4R 300 FR32EU	32	300	110	110	90	M8	70	30	32	71.5	44	40	27.4	51	1.22	FSR35M 300
T4R 300 FR40EU	40	300	120	120	100	M8	75	31.9	33.9	77	49	45	29.5	60	1.90	FSR35M 300
T4R 400 FR40EU	40	400	150	150	126	M10	104	44.4	46.4	107.8	50	45	29.5	60	2.5	FSR47M 400
T4R 400 FR52EU	52	400	180	180	156	M10	110	46	49	116.8	59	54	34.2	71	4.7	FSR47M 400
T4R 400 RKY52	52	400	180	180	156	M10	110	46	49	116.8	59	54	34.2	76	5.1	FSR47M 400
T4R 500 FR40EU	40	500	150	150	126	M10	104	47.4	50.4	107.8	50	45	29.5	60	2.5	FSR47M 500
T4R 500 FR52EU	52	500	180	180	156	M10	110	46	49	116.8	59	54	34.2	71	4.7	FSR47M 500
T4R 500 RKY52	52	500	180	180	156	M10	110	46	49	116.8	59	54	34.2	76	5.1	FSR47M 500


- (1) Available with stainless steel guide rollers(2) Carriages are complete with guide rollers

Multi-Motion-Line

Steering carriage T4R...


Timo							Dimens	sions (m	nm)						Weight	Suggested combination
Type	De	L	В	e _x	e _y	l _x	l _y	Н	H1	H2	G	Α	Е	Z	(kg)	
74R22 FR22EU 74R22 FRN22EI	22	80	62	68	50	50	43.3	45.5	43	12	M5	65.3	27	51.6 53.6	0.5	FSR 22 M FS 22 M
74R35 FR32EU 74R35 FRN32EI	32	140	112	120	90	96	71.5	59.9	55.9	13	M8	103.5	42	66.2 69.3	1.1	FSR 35 M FS 35 M
74R35 FR40EU 74R35 FRN40EI	40	140	112	120	90	96	77	62.8	58.8	13	M8	117	42	72.8 74.3	1.6	FSR 35 M FS 35 M
74R47 FR40EU 74R47 FRN40EI	40	180	160	150	130	120	107.8	74.3	69.3	19	M10	147.8	56	83.3 84.8	2.4	FSR 47 M FS 47 M
74R47 FR52EU 74R47 RKY52	52	180	160	150	130	120	116.8	78.6	73.6	19	M10	168.8	56	90.3	3.3	FSR 47 M FS 47 M



Multi-Motion-Line

Mounting example

Assembly line Multi-Motion-Line

System LS

System LS

With the new C-Line family, Nadella aims to offer a complete product line: the LS guides, available in 3 sizes; the guide rollers, also available in floating version cursors with 3, 4, 5 and 6 rollers already available in stock.

The cold drawn rails have a C shape and the internal raceways are induction hardened.

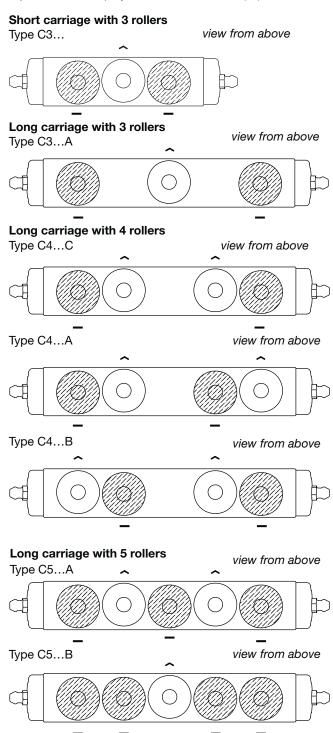
The guide rollers slide inside the rails, in this way, they are protected from any accidental impacts.

The guides are Zinc-plated as standard and can also be supplied Nickel-plated for more aggressive environments.

The use of floating guide rollers, coupled with "fixed" rollers, allows to obtain a self-aligning system, able to balance possible axial or transversal misalignment errors between two parallel guides.

Nadella has the advantage of using a single driving profile for both types of rollers.

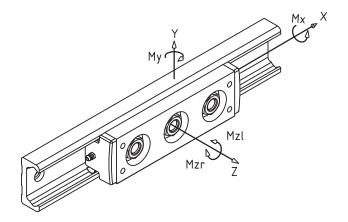
The C-line is available in three sizes and the guide rollers can be both centered and eccentric to allow adjustment of the play.


Sliders are available in two versions: sliders with central block in aluminum C.RCS ... , C.RAS ... and C.RYS and sliders with central block in steel C.RCN ... , C.RAN ... and C.RYN.

Essential technical properties:

- steel rail, drawn, induction hardened
- □ zinc-plated rail, alternatively with nickel-plated surface
- rollers for fixed and floating bearing constructions
- high balance of mounting surface errors and misalignment
- high performance and rugged
- rollers lubricated for life
- dust resistant
- easy fitting
- easy smooth running
- high speeds up to 8 m/s (depending on roller size and application)
- ☐ acceleration up to 20 m/s²
- □ working temperatures up to 80°C possible
- pitch of rail borings standard or according to customer drawings
- integrated lubricating system at the front sides of the carriage

CARRIAGE CONFIGURATION: CARRIAGES WITH CENTRAL BLOCK IN ALUMINUM RCS, RAS AND RYS.


The load capacity of the carriage shown in the following paragraphs refer to the following mounting configuration, where the guide rollers dashed lines represent the concentric guide rollers (—), while the eccentric rollers which allow the adjustment of the play, do not exhibit hatch (^).

The markings \wedge and \rightarrow show the contact points with the running surface of the rails.

System LS

MAXIMUN LOAD CAPACITY OF SINGLE CARRIAGE

The load capacity charts must be considered when loads act exclusively in a single load direction (only along the Y axis or only along the Z axis). In case of combined loads the maximum load allowed will have lower values.

The tables below show the values of maximum loads applicable on a single carriage in relation to the axis system shown.

Short carriage with 3 wheels type RCS, RAS and RYS

Guide	Carriage	Fy ⁽¹⁾	Fz ⁽²⁾ N	Mx ⁽³⁾ Nm	My ⁽²⁾ Nm	Mz ⁽⁴⁾ Nm
LS 28	C3 RCS28 126	2400	660	5.9	17	30
LS 43	C3 RCS43 170	5500	1700	23	66	107
LS 63	C3 RCS63 226	13000	4400	81	264	390

- Fy directed to load the concentric wheels, valid for carriage type RCS, RAS and RYS
 For carriages type RYS the load is reduced by SO%; load equal to ZERO for carriages type RAS
- (3) Mx equal to ZERO on carriages type RAS and RYS
- (4) Mz valid for carriages type RCS, RAS and RYS

Long carriage with 3, 4 and 5 wheels type RCS, RAS and RYS

Guide	Carriage	Fy ⁽¹⁾	Fz ⁽²⁾ N	Mx ⁽³⁾ Nm	My ⁽²⁾ Nm	Mz ⁽⁴⁾ Nm Mzl Mz	r
LS 28	C3 RCS28 178 A C4 RCS28 178 C C4 RCS28 178 A C4 RCS28 178 A C4 RCS28 178 B C5 RCS28 178 A C5 RCS28 178 B	2400 2400 1800 1800 3000 3600	660 1320 990 990 1320 660	5.9 12 8.9 8.9 12 5.9	34 43 38 38 43 35	62 62 94 94 125 62 62 12 94 94 62 62	1 2 5 1
LS 43	C3 RCS43 245 A C4 RCS43 245 C C4 RCS43 245 A C4 RCS43 245 B C5 RCS43 245 A C5 RCS43 245 B	5500 5500 4100 4100 6800 8200	1700 3400 2380 2380 3400 1700	23 45 34 34 45 23	129 162 129 129 162 133	209 20 314 31 418 20 209 41 314 31 209 20	4 9 8 4

- (1) Fy directed to load the concentric wheels, valid for carriages type RCS, RAS and RYS
- (2) For carriages type RYS the load is reduced by SO%; load equal to ZERO for carriages type RAS
- (3) Mx equal to ZERO on carriage type RAS and RYS
- (4) Mz valid for carriages type RCS, RAS and RYS.

DYNAMIC LOAD CAPACITY OF SINGLE CARRIAGE

The tables below show the dynamic load capacity that allows a nominal life of 100 km.

The nominal life of the carriage can be calculated using the following formula:

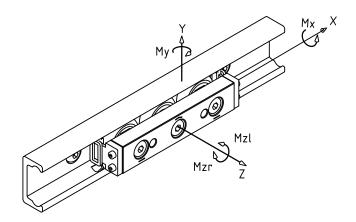
$$L_{10} = (Ci/Pi)^3 \times 100 \text{ km}$$

Where Ci and Pi are: the allowed dynamic loads (Ci) and the external loads (Pi) acting on the carriage in a particular direction of load (i).

Short carriage with 3 wheels type RCS, RAS and RYS

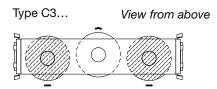
Guide	Carriage	Cy ⁽¹⁾	Cz ⁽²⁾	CMx (3) Nm	CMy (2) Nm	CMz (4 Nm Mzl M:	
LS 28	C3 RCS28 126	4400	1100	9.6	27	55 5	5
LS 43	C3 RCS43 170	13200	3600	48	142	257 25	57
LS 63	C3 RCS63 226	28400	6700	124	403	852 85	52

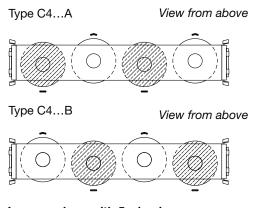
- (1) Cy directed to load t.he concentric wheels, valid for cursor type RCS, RAS and RYS
- (2) For carriage type RYS the load is reduced by 50%; load equal to zrno for cursor type RAS.
- (3) CMx equal to ZERO for carriage type RAS and RYS
- (4) CMZ valid for carriage type RCS, RAS and RYS.


Long carriage with 3, 4 and 5 wheels type RCS, RAS and RYS

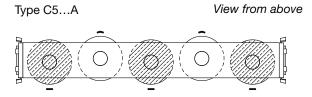
Guide	Carriage	Cy ⁽¹⁾	Cz ⁽²⁾ N	CMx (3) Nm	CMy (2) Nm	N	z ⁽⁴⁾ m Mzr
LS 28	C3 RCS28 178 A C4 RCS28 178 C C4 RCS28 178 A C4 RCS28 178 B C5 RCS28 178 A C5 RCS28 178 B	4400 4400 3300 3300 6600 8800	1100 2100 1600 1600 2100 1100	9.6 19 14 14 19 9.6	55 69 61 61 69 67	114 172 229 114 172 114	114 172 114 229 172 114
LS 43	C3 RCS43 245 A C4 RCS43 245 C C4 RCS43 245 A C4 RCS43 245 B C5 RCS43 245 A C5 RCS43 245 B	13200 9900 9900	3600 7300 5100 5100 7300 3600	48 96 72 72 96 48	277 346 304 304 346 292	502 752 1003 502 752 502	502 752 502 1003 752 502

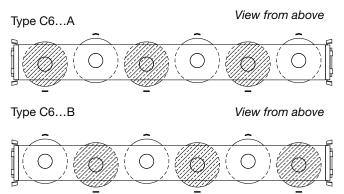
- (1) Cy directed to load the concentric wheels, valid for cursor type RCS, RAS and RYS $\,$
- (2) For carriage type RYS the load is reduced by 50%; load equal to ZERO for cursor type RAS.
- (3) CMx equal to ZERO for carriage type RAS and RYS
- (4) CMZ valid for carriage type RCS, RAS and RYS.


System LS


CARRIAGE CONFIGURATION: CARRIAGES WITH CENTRAL BLOCK IN STEEL RCN, RAN AND RYN.

The load capacity of the carriage shown in the following paragraphs refer to the following mounting configuration, where the guide rollers dashed lines represent the concentric guide rollers (-), while the eccentric rollers which allow the adjustment of the play, do not exhibit hatch (\sim).


Short carriage with 3 wheels


Long carriage with 4 wheels

Long carriage with 5 wheels

Long carriage with 6 wheels

The markings \wedge and - show the contact points with the running surface of the rails.

MAXIM UN LOAD CAPACITY OF SINGLE CARRIAGE

The load capacity charts must be considered when loads act exclusively in a single load direction (only along the Y axis or only along the Z axis). In the case of combined loads the maximum load allowed will have lower values.

The tables below, show the values of maximum loads applicable to individual carriages in relation to the axis system shown.

Short carriage with 3 wheels type RCN, RAN and RYN

Guide	Carriage	Fy ⁽¹⁾ N	Fz ⁽²⁾ N	Mx ⁽³⁾ Nm	My ⁽²⁾ Nm	Mz ⁽⁴⁾ Nm
LS 28	C3 RCN28 080	2400	660	5.9	18	32
LS 43	C3 RCN43 120	5500	1700	23	68	110
LS 63	C3 RCN63 180	13000	4400	81	264	390

- Fy directed to load the concentric wheels, valid for carriage type RCN, RAN and RYN
 For carriages type RYN the load is reduced by 50%; load equal to ZERO for carriages type RAN
- (3) Mx equal to ZERO on carriages type RAN and RYN
- (4) Mz valid for carriages type RCN, RAN and RYN

Long carriage with 3,4,5 and 6 wheels type RCN, RAN and RYN

Guide	Carriage	Fy ⁽¹⁾	Fz ⁽²⁾	Mx ⁽³⁾ Nm	My ⁽²⁾ Nm	Mz (4 Nm MzI N	l
LS 28	C4 RCN28 100 A C4 RCN28 100 B C5 RCN28 125 C6 RCN28 150 A C6 RCN28 150 B	1600 1600 3600 2170 1950	750 750 1320 1400 1400	7.7 7.7 12 13 13	18 18 40 52 52	30 88 156	30 90 88 90 56
LS 43	C4 RCN43 150 A C4 RCN43 150 B C5 RCN43 190 C6 RCN43 230 A C6 RCN43 230 B	3650 3650 8250 5000 5000	1880 1880 3400 3600 3600	31 31 45 50 50	70 70 159 212 212	102 3 309 3 543 3	102 303 309 313 543
LS 63	C4 RCN63 235 A C4 RCN63 235 B C5 RCN63 290 C6 RCN63 345 A C6 RCN63 345 B	8670 8670 19500 11830 11830	4470 4470 8800 8900 8900	109 109 163 179 179	260 260 638 759 759	1131 3 377 1 1131 1 1927 1 1112 1	131 131 112

- (1) Fy directed to load the concentric wheels, valid for carriage type RCN, RAN and RYN
- (2) For carriages type RYN the load is reduced by 50%; load equal to ZERO for carriages type RAN
- (3) Mx equal to ZERO on carriages type RAN and RYN $\,$
- (4) Mz valid for carriages type RCN, RAN and RYN

System LS

DYNAMIC LOAD CAPACITY OF SINGLE CARRIAGE

The tables below show the dynamic load capacity that allows a nominal life of 100 km.

The nominal life of the carriage can be calculated using the following formula:

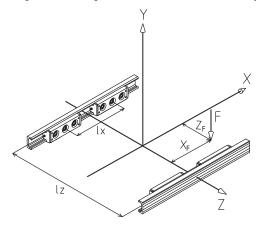
$$L_{10} = (Ci/Pi)^3 \times 100 \text{ km}$$

Where Ci and Pi are: the allowed dynamic loads (Ci) and the external loads (Pi) acting on the carriage in a particular direction of load (i).

Short carriage with 3 wheels type RCN, RAN and RYN

Guide	Carriage	Cy ⁽¹⁾ N	Cz (2) N	CMx ⁽³⁾ Nm	CMy ⁽²⁾ Nm	CMz ⁽⁴⁾ Nm
LS 28	C3 RCN28 080	4400	1100	9.6	29	59
LS 43	C3 RCN43 120	13200	3600	48	146	264
LS 63	C3 RCN63 180	28400	6700	124	400	850

- (1) Cy directed to load the concentric wheels, valid for carriage type RCN, RAN and RYN (2) For carriages type RYS the load is reduced by 50%; load equal to ZERO for carriages
- (3) CMx equal to ZERO on carriage, type RAN and RYN
- (4) CMz valid for carriages type RCN, RAN and RYN


Long carriage with 3,4,5 and 6 wheels type RCN, RAN and RYN

Guide	Carriage	Cy ⁽¹⁾	Cz (2) N	CMx (3) Nm	CMy (2) Nm	CMz ⁽⁴⁾ Nm Mzl Mzr
LS 28	C4 RCN28 100 A	2900	1300	13	32	165 55
	C4 RCN28 100 B	2900	1300	13	32	55 165
	C5 RCN28 125	4400	2100	19	65	162 162
	C6 RCN28 150 A	4800	2400	21	87	286 165
	C6 RCN28 150 B	4800	2400	21	87	165 286
LS 43	C4 RCN43 150 A	8800	4100	64	149	726 244
	C4 RCN43 150 B	8800	4100	64	149	244 726
	C5 RCN43 190	13200	7300	96	341	740 740
	C6 RCN43 230 A	14400	7800	105	438	1300 750
	C6 RCN43 230 B	14400	7800	105	438	750 1300
LS 63	C4 RCN63 235 A	18900	8000	166	465	2470 824
	C4 RCN63 235 B	18900	8000	166	465	824 2470
	C5 RCN63 290	42600	13400	249	974	2470 2470
	C6 RCN63 345 A	31000	15100	271	1250	4210 2430
	C6 RCN63 345 B	31000	15100	271	1250	2430 4210

- (1) Cy directed to load the concentric wheels, valid for carriage type RCN, RAN and RYN (2) For carriages type RYS the load is reduced by 50%; load equal to ZERO for carriages
- (3) CMx equal to ZERO on carriage type RAN and RYN
- (4) CMz valid for carriages type RCN, RAN and RYN

Calculation example: platform with 4 carriages C3 RCS 43 170

The general arrangement is shown in the drawing below.

The platform runs along the two rails and is charged with load F which takes effect 100 mm and 50 mm afar from the middle of the carriage.

Data: guide LS 43; carriage C3 RCS 43 170

$$\begin{split} & I_X = \ 400 \ mm, & I_Z = \ 300 \ mm \\ & F = \ 6000 \ N \ , & X_F = \ 100 \ mm, & Z_F = \ 50 \ mm \end{split}$$

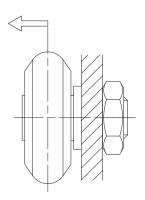
In this configuration Py is the load on the mostly loaded carriage and is calculated as follows:

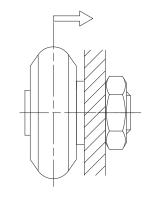
$$P = \frac{F}{4} + \frac{F \cdot X_F}{2 \cdot I_X} + \frac{F \cdot Z_F}{2 \cdot I_Z} = 2750 \text{ N}$$

The load Fy indicated in the table of max load for carriage C3 RCS 43 170 is 6000 N.

The system nominal lifetime is calculated as follows: from the table of the dynamic load capacity, the value Cy for carriage C3 RCS 43 170 is 13200 N.

$$L_{10} = (13200/2750)^3 \times 100 = 11059 \text{ km}$$

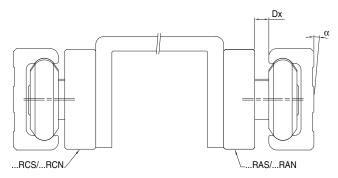

Important remark: The rail must be lubricated to reach this value. Otherwise the expected lifetime can be reduced by fretting between rail and roller.



System LS

Self-aligning system

The combined use of "fixed" rollers type RCS and RCN with floating rollers type RAS and RAN allows to obtain a selfaligning system, in fact, floating rollers, where the bearing can slide axially on the stud, allow to recover any alignment error due to an inaccurate mounting or deformations.



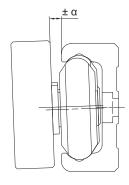
Horizontal misalignement Dx

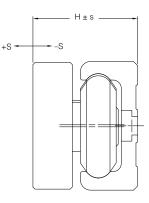
In case of horizontal misalignment Dx between mounting surfaces, you can use on one side LS guides with carriages type RCS or RCN and, on the parallel side, LS guides with floating carriages type RAS or RAN; carriages RAN and RAS allow an axial misalignment Dx.

Floating carriages provide only radial support; the axial load, transverse to the running direction, will have to be supported entirely by the "fixed" carriage type RCS or RCN mounted in the opposite rail.

Vertical misalignment Dy

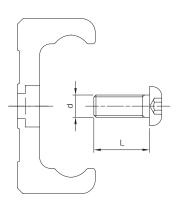
In the case of vertical misalignment Dy between the guides, you must allow rotation of both carriages; for this reason carriages type RYN and RYS are equipped with "fixed" rollers (RCS and RCN), in contact with a sliding track, and eccentric floating rollers (RASR and RANR) in contact with the opposite raceway. On the parallel guide, a carriage with only floating rollers type RAS or RAN must be mounted.


The maximum value of Dy depends on the distance between the guides and must not exceed the maximum angle α . provided for the carriage equals to α = ±1.5 °.


The axial load capacity of carriages RYS and RYN is halved compared to the carriages RCS and RCN of the same size.

Maximum misalignment allowed by aligning carriages RAS, RAN, RYS and RIN

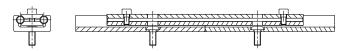
Carriage	α max (°)	S (mm)	H nominal (mm)	Guide
CRAS28 CRAN28	1°	-0.5/+1.2	24 23.9	LS 28
CRAS43 CRAN43	1.5°	-0.8/+1.5	37	LS 43
CRAS63 CRAN63	1°	-1/+3	50.5 49.8	LS 63
CRYS28 CRYN28	1°		24 23.9	LS 28
CRYS43 CRYN43	1.5°		37	LS 43
CRYS63 CRYN63	1°		50.5 49.8	LS 63

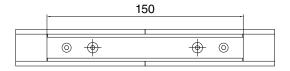


System LS

SCREW FOR RAILS WITH COUNTERBORE HOLES

Guides with counterbore holes come with complete set of shallow head screws DIN EN ISO 7380 (Class 10.9).




Guide	screw size d	L	Torque wrench settings (Nm)
LS 28	M5 x 0.8	12	8
LS 43	M8 x 1.25	16	22
LS 63	M8 x 1.25	20	34

ALIGNMENT DEVICE ALS

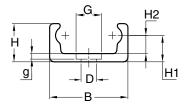
For an easier mounting of two consecutive rails we recommend the use of alignment devices ALS.

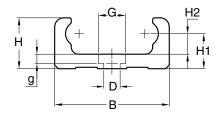
Guide	Aligment device
LS 28	ALS 28
LS 43	ALS 43

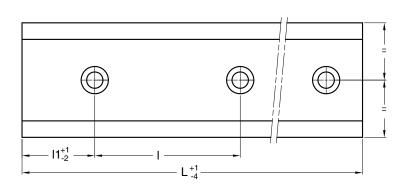
Instructions: Insert the screws into the holes of the guide without tightening.

Mount the alignment device and tighten its screws until it reaches the proper alignment.

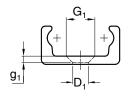
Tighten the screws of the guides

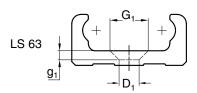

System LS


Hole pattern A: boring for counterbore screws according DIN EN ISO 7380


LS 28

LS 43


LS 63



Hole pattern B: boring for countersunk screws according DIN EN ISO 74

LS 28 LS 43

Туре					[Dimensio	ons (mm)					Mome inertia		Weight (kg/m)	L ⁽¹⁾ max (mm)
	B H H ₁ H ₂ D G g D ₁ G ₁ g ₁ I I ₁										I ₁	J_{x}	J _y	(19,11)	(*****)	
LS 28	28	12.5	9	5.5	6.6	11	2.1	5.5	10.6	2.6	80	40	0.17	1.45	1.18	4000
LS 43	43	21	14.5	10	9	15	2.5	9	17	4	80	40	1.28	8.6	2.75	4000
LS 63	63	28	19.25	11.25	9	15	4.5	11	21	5.5	80	40	4.5	38.9	6.22	4000

¹⁾ Longer rails will be fitted with finish-machined joints.

Rail design standard

- drawn, induction hardened raceways (MT)
- surface zinc-plated (MT...GZ)

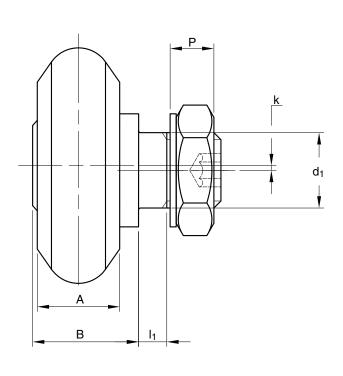
Fixing holes

- hole pattern according to catalogue (A or B)
- hole pattern according to drawing (NZ)
- without holes (NF)

Surface options

- chemically nickel-plated (NW)
- uncoated blasted

Example standard type: LS43MT2480AGZ


Screws DIN EN ISO 7380 (10.9) are included in delivery.

Guide Rollers RCS

concentric SW_2 Μ SW₁ De S min. m

eccentric

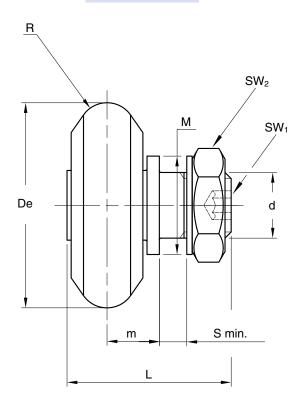
Ту	pe						Dim	nensio	ns (mm	1)							
concentric	eccentric	De	R	d ₁ (1)	d	m	S min.	Р	L	Α	В	l ₁	М	SW ₁	SW ₂	k	Guide
RCS 28	RCSR 28	23.5	3	8	M8	6	2.5	4.8	18.5	6	10	3.5	12	3	13	0.5	LS 28
RCS 43	RCSR 43	35.5	5	10	M10 x 1.25	9	4.5	6	27.5	11	15	5.5	17.5	4	16	0.75	LS 43
RCS 63	RCSR 63	50	7	16	M16 x 1.5	12.75	5.25	9.2	39.5	17	22.25	6.25	24	6	24	1	LS 63

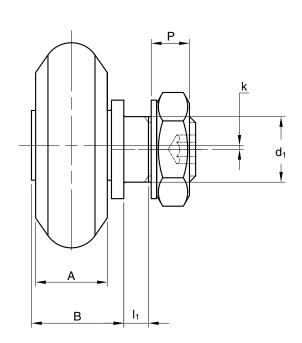
Туј	pe	Dynamic loads (N)	Limit lo	ads (N)	Life coe	fficients	Torque- wrench	Weight
concentric	eccentric	Cw(3)	radial F _r	axial F _a	X	Y	settings (Nm) ⁽²⁾	(g)
RCS 28	RCSR 28	2200	1200	330	1	2.7	8	25
RCS 43	RCSR 43	6600	2750	850	1	2.2	20	80
RCS 63	RCSR 63	14200	6500	2200	1	2.8	64	255

¹⁾ Tolerance of mounting hole: H7

Guide rollers will be supplied with washers and nuts (DIN 439B).

Contact angle α for the load calculation: 55°


²⁾ The tightening torques apply to non-lubricated threads; for lubricated threads the values have to be multiplied by 0.8. 3) Cw = load for lifetime of 100 km


Floating Guide Rollers RAS

concentric

eccentric

Тур	ре						I	Dimen	sions (mm)								
concentric	eccentric	De	R	d ₁ ⁽¹⁾	d	m min. ⁽⁴⁾	m max. ⁽⁴⁾	S min.	Р	L	А	В	I ₁	М	SW ₁	SW ₂	k	Guide
RAS 28	RASR 28	23.5	3	8	M8	5.5	7.2	2.5	4.7	18	6	9.5	3.5	12	3	13	0.5	LS 28
RAS 43	RASR 43	35.5	5	10	M10 x 1.25	8.2	10.5	4.5	5.9	27	10	14.5	5.5	17.5	4	16	0.75	LS 43
RAS 63	RASR 63	50	7	16	M16 x 1.5	11.75	15.75	5.5	9.2	40	17	22.5	6.5	24	6	24	1	LS 43

Ту	ре	Dynamic load (N)	Limit load (N)	Torque wrench	Weight
concentric	eccentric	Cw ⁽³⁾	radial F _r	settings (Nm) ⁽²⁾	(g)
RAS 28	RASR 28	2200	1200	8	25
RAS 43	RASR 43	6600	2750	20	80
RAS 63	RASR 63	14200	6500 64		255

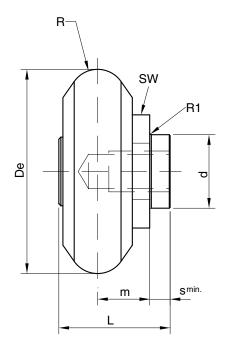
¹⁾ Tolerance of mounting hole: H7

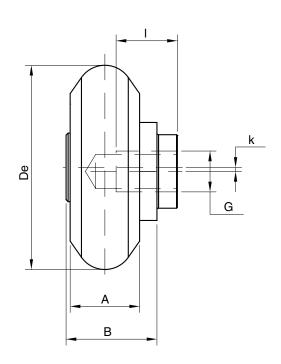
Guide rollers will be supplied with washers and nuts (DIN 439B).

Contact angle α for the loadd calculation: 55°

²⁾ The tightening torques apply to non-lubricated threads; for lubricated threads the values have to be multiplied by 0.8.

3) Cw = load for lifetime of 100 km


⁴⁾ Maximum displacement of dimension m to ensure proper guide roller function and safety.


Guide rollers RCN

concentric

eccentric

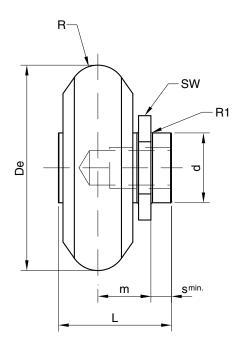
Ty	pe						Dime	ensions ((mm)						Weight	
concentric	eccentric	De	R	d ⁽¹⁾	m	R1 max.	S	L	А	В	SW	G	-1	k	(g)	Guide
RCN 28	RCNR 28	23.5	3	10	6	0.4	2	11.7	6	9.7	13	M5	8	0.5	22	LS 28
RCN 43	RCNR 43	35.5	5	12	9	0.4	3	17.9	10	14.9	17	M8	11	0.75	76	LS 43
RCN 63	RCNR 63	50	7	18	12.75	0.4	5	27.25	17	22.25	24	M10	15	1	237	LS 43

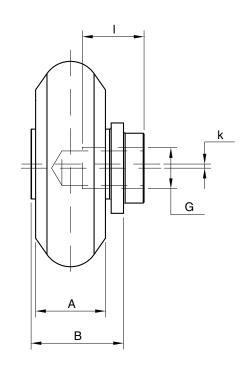
Туј	pe	Dynamic load (N)	Limit lo	oad (N)	Life coe	efficients	Screw	Screw	Torque wrench
concentric	eccentric	Cw ⁽³⁾	radial F _r	axial F _a	Х	Υ	diameter G	lenght (mm)	settings (Nm) ⁽²⁾
RCN 28	RCNR 28	2200	1200	330	1	2.7	M5	10	7
RCN 43	RCNR 43	6600	2750	850	1	2.2	M8	14	12
RCN 63	RCNR 63	14200	6500	2200	1	2.8	M10	20	35

- 1) Tolerance of mounting hole: H7
 2) The tightening torques apply to non-lubricated threads; for lubricated threads the values have to be multiplied by 0.8.
 3) Cw = load for lifetime of 100 km
- 4) Maximum displacement of dimension m to ensure proper guide roller function and safety.

Screws type (10.9); the use of self-locking washers schnorr is recommended.

Contact angle α for the loadd calculation: 55°




Guide rollers RAN

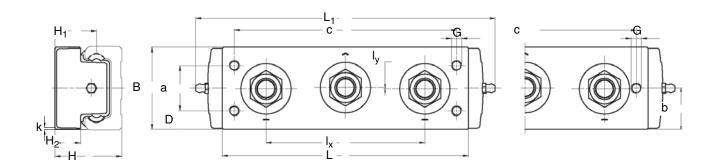
concentric

eccentric

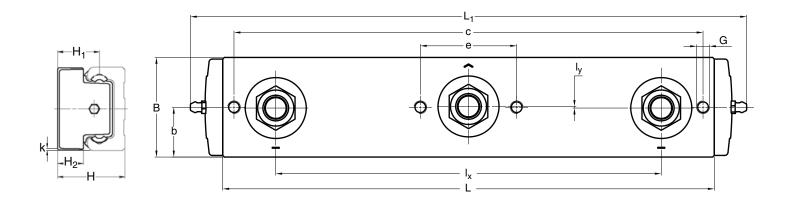
Ту	pe						D	imensio	ons (mn	٦)						Weight	
concentric	eccentric	De	R	d (1)	m min	m max	R1 max.	S	L	А	В	SW	G	I	k	(g)	Guide
RAN 28	RANR 28	23.5	3	10	5.4	7.1	0.4	2	11.4	6	9.4	13	M5	8	0.5	22	LS 28
RAN 43	RANR 43	35.5	5	12	7.8	10.1	0.4	3	18.1	10	15.1	17	M8	11	0.75	76	LS 43
RAN 63	RANR 63	50	7	18	11.7	15.7	0.4	5	27.5	17	22.5	24	M10	15	1	237	LS 43

Ту	pe	Dynamic load (N)	Limit load (N)	Screw	Screw	Torque wrench settings
concentric	eccentric	Cw ⁽³⁾	radial F _r	diameter G	lenght (mm)	(Nm) ⁽²⁾
RAN 28	RANR 28	2200	2200 1200		10	7
RAN 43	RANR 43	6600	2750	M8	14	12
RAN 63	RANR 63	14200	6500	M10	20	35

- 1) Tolerance of mounting hole: H7
 2) The tightening torques apply to non-lubricated threads; for lubricated threads the values have to be multiplied by 0.8.
 3) Cw = load for lifetime of 100 km
- 4) Maximum displacement of dimension m to ensure proper guide roller function and safety.


Screws type (10.9); the use of self-locking washers schnorr is recommended.

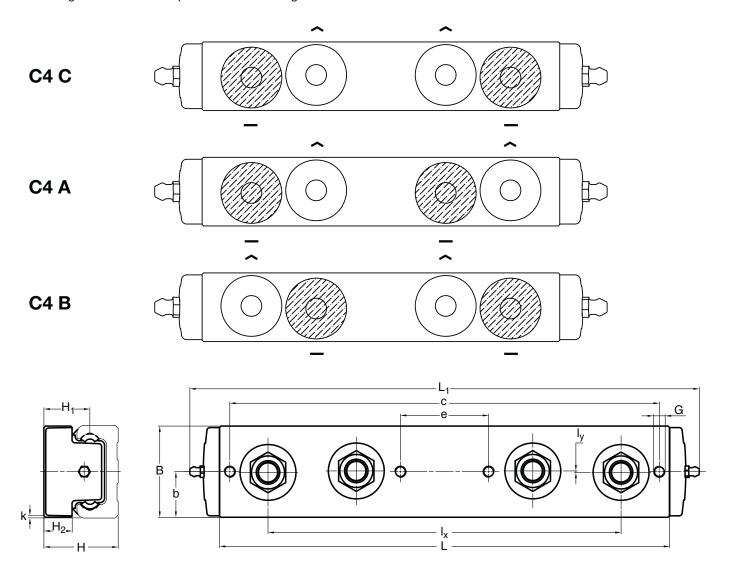
Contact angle α for the loadd calculation: 55°


Carriages C3 RCS, C3 RAS, C3 RYS

	Type						Dim	ensions	(mm)						Weight	Guide
	туре	L	L ₁	В	l _x	l _y	Н	H ₁	H ₂	G	а	b	С	k	(kg)	Guide
	C3 RCS28 126	88	126	26.5	50	0.5	24	15	9	M5 (2x)	-	13.25	78	0.75	0.13	LS 28
short carriage	C3 RCS43 170	130	170	40	78	1	37	22.5	13.5	M8 (2x)	-	20	114	1.5	0.44	LS 43
3 -	C3 RCS63 226	186	226	60	120	1	50.5	31.25	18.5	M8 (4x)	34	13	168	1.5	1.2	LS 63

Dimensions also apply to C3 RAS and C3 RYS.

	Typo						Dime	ensions (mm)						Weight	Guide
	Туре	L	L ₁	В	l _x	l _y	Н	H ₁	H ₂	G	b	С	е	k	(kg)	Guide
long	C3 RCS28 178 A	140	178	26.5	104	0.5	24	15	9	M5	13.25	130	26	0.75	0.15	LS 28
	C3 RCS43 245 A	205	245	41	152	1	37	22.5	13.5	M8	20.5	188	37	1	0.50	LS 43


Dimensions also apply to C3 RAS and C3 RYS.

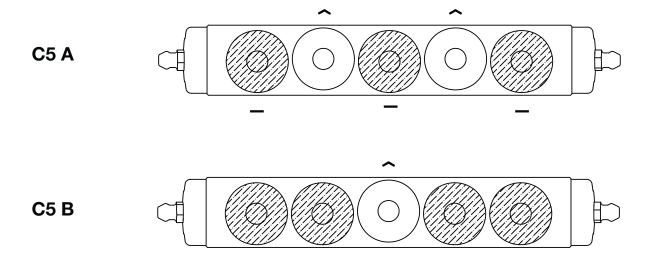
Carriages C4 RCS, C4 RAS, C4 RYS

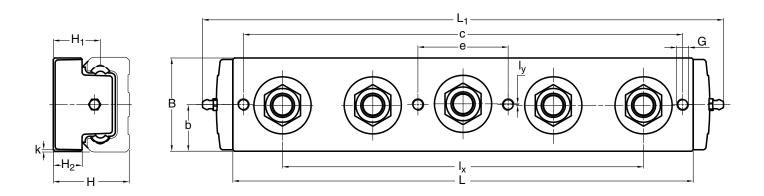
Standard roller combinations

The markings show the contact points with the running surface of the rails.

Time						Dime	ensions	(mm)						Weight	Cuido
Type	L	L ₁	В	I _x	l _y	Н	H ₁	H ₂	G	b	С	е	k	(kg)	Guide
C4 RCS28 178 C C4 RCS28 178 A C4 RCS28 178 B	140	178	26.5	104	0.5	24	15	9	M5	13.25	130	26	0.75	0.23	LS 28
C4 RCS43 245 C C4 RCS43 245 A C4 RCS43 245 B	205	245	41	152	1	37	22.5	13.5	M8	20.5	188	37	1	0.58	LS 43

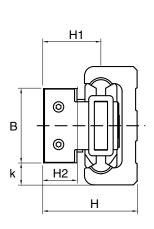
Dimensions also apply to C4 RAS C/A/B and C4 RYS C/A/B.

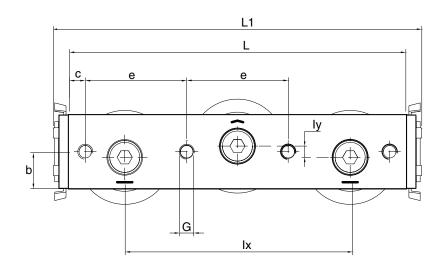


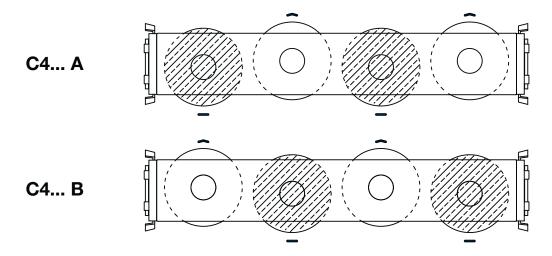

Carriages C5 RCS, C5 RAS, C5 RYS

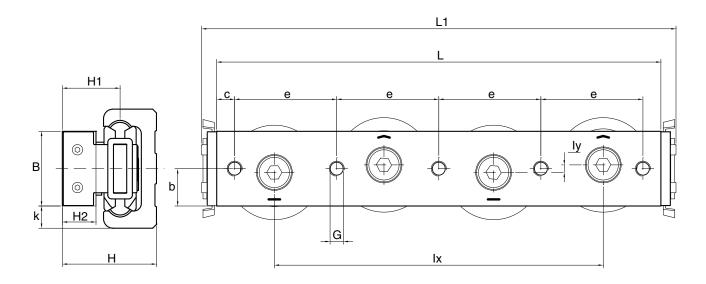
Standard roller combinations

The markings show the contact points with the running surface of the rails.

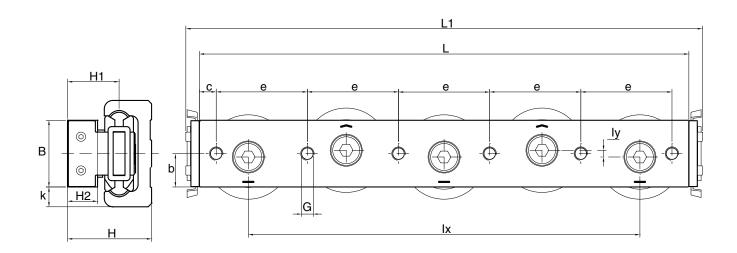

Time						Dime	ensions	(mm)						Weight	Guide
Type	L	L ₁	В	l _x	l _y	Н	H ₁	H ₂	G	b	С	е	k	(kg)	Guide
C5 RCS28 178 A C5 RCS28 178 B	140	178	26.5	104	0.5	24	15	9	M5	13.25	130	26	0.75	0.25	LS 28
C5 RCS43 245 A C5 RCS43 245 B	205	245	41	152	1	37	22.5	13.5	M8	20.5	188	37	1	0.66	LS 43


Dimenisions also apply to C5 RAS A/B and C5 RYS A/B.


T						Din	nensions	(mm)						Weight	Outale
Туре	L	L ₁	В	I _x	l _y	Н	H ₁	H ₂	G	b	С	е	k	(kg)	Guide
C3 RCN 28 080	80	96	14.9	54	0.5	23.9	14.9	8.9	M5 (2x)	7.45	22.5	35	6.55	0.145	LS 28
C3 RCN 43 120	120	136	24.9	80	0.5	37	22.5	13.5	M8 (2x)	12.45	32.5	55	9.05	0.534	LS 43
C3 RCN 63 180	180	196	39.5	120	1	49.8	30.55	17.8	M8 (4x)	19.75	9	54	6.75	1.666	LS 28


Dimensions also apply to C3 RAN and C3 RYN.

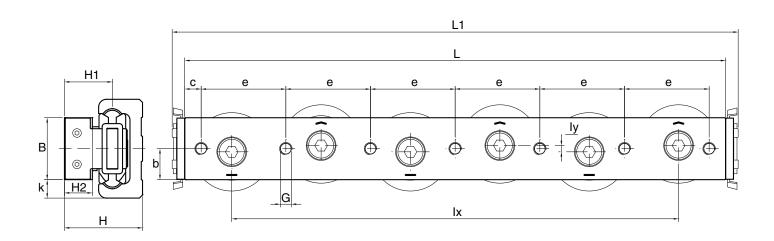
Carriages C4 RCN, C4 RAN, C4 RYN


T						Din	nensions	(mm)						Weight	0
Type	L	L ₁	В	I _x	l _y	Н	H ₁	H ₂	G	b	С	е	k	(kg)	Guide
C4 RCN 28 100 A C4 RCN 28 100 B	100	116	14.9	75	0.5	23.9	14.9	8.9	M5 (2x)	7.45	25	50	6.55	0.18	LS 28
C4 RCN 43 150 A C4 RCN 43 150 B	150	166	24.9	110	0.5	37	22.5	13.5	M8 (2x)	12.45	35	80	9.05	0.684	LS 43
C4 RCN 63 235 A C4 RCN 63 235 B	235	251	39.5	174	1	49.8	30.55	17.8	M8 (5x)	19.75	9.5	54	6.75	2.149	LS 63

Dimensions also apply to C4 RAN and C4 RYN.

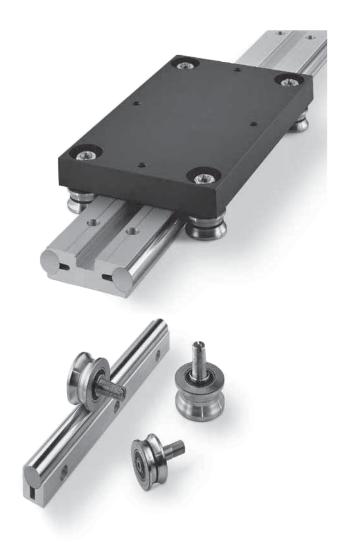
Carriages C5 RCN, C5 RAN, C5 RYN


T						Din	nensions	(mm)						Weight	Outale
Туре	L	L ₁	В	I _x	l _y	Н	H ₁	H ₂	G	b	С	е	k	(kg)	Guide
C5 RCN 28 125	125	141	14.9	98	0.5	23.9	14.9	8.9	M5 (4x)	7.45	25	25	6.55	0.229	LS 28
C5 RCN 43 190	190	206	24.9	150	0.5	37	22.5	13.5	M8 (4x)	12.45	35	40	9.05	0.853	LS 43
C5 RCN 63 290	290	306	39.5	232	1	49.8	30.55	17.8	M8 (6x)	19.75	10	54	6.75	2.672	LS 28


Dimensions also apply to C5 RAN and C5 RYN.

A CONTRACTOR OF THE PARTY OF TH

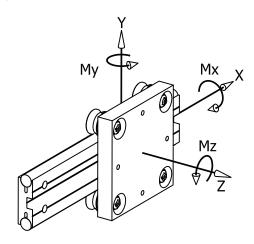
Carriages C6 RCN, C6 RAN, C6 RYN



Time						Din	nensions	(mm)						Weight	Outda
Type	L	L ₁	В	I _x	l _y	Н	H ₁	H ₂	G	b	С	е	k	(kg)	Guide
C6 RCN 28 150 A C6 RCN 28 150 B	150	166	14.9	125	0.5	23.9	14.9	8.9	M5 (3x)	7.45	25	50	6.55	0.265	LS 28
C4 RCN 43 230 A C6 RCN 43 230 B	230	246	24.9	190	0.5	37	22.5	13.5	M8 (3x)	12.45	35	80	9.05	1.036	LS 43
C6 RCN 63 345 A C6 RCN 63 345 B	345	361	39.5	285	1	49.8	30.55	17.8	M8 (7x)	19.75	10.5	54	6.75	3.158	LS 63

Dimensions also apply to C6 RAN and C6 RYN.

DC, C Systems


DC system

DC system is based on rails, guide rollers and carriages that provide a complete guiding system.

Rails and rollers can be used as single elements.

In most cases the application is based on standard carriages.

The load capacities are tabulated with reference to the axis system showed in the sketch below:

MAXIMUM LOADS ON SINGLE CARRIAGE

The following table shows the maximum loads that can be applied on a single carriage.

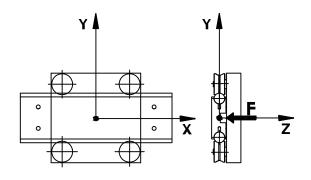
Rails	Carriages	Fy N	Fz N	Mx Nm	My Nm	Mz Nm
DC 10.54	T4 PFV 25 10 80	1590	800	22	18	35
	T4 PFV 25 10 120	1590	800	22	33	67
DC 16.80	T4 PFV 35 16 165	3000	1400	58	92	198
	T4 PFV 35 16 250	3000	1400	58	155	333
DC 18.65	T4 PFV 35 18 150	3000	1400	47	83	178
	T4 PFV 35 18 250	3000	1400	47	155	336
DC 25.95	T4 PFV 50 25 220	7890	3900	180	320	640
	T4 PFV 50 25 300	7890	3900	180	480	950

The maximum loads are based on the stud and bearing strengths and on a maximum contact pressure, between rail and roller, of 1250 N/mm². The load in the table are considered as acting singularly. For applications with many loads acting at the same time the loads must be reduced.

BASIC DYNAMIC LOADS OF SINGLE CARRIAGE

The following table shows the nominal loads that correspond to a nominal life of the bearing at 100 km.

The nominal lifetime of the carriage can be estimated from the standard bearing formula


$$L_{10} = (Ci/Pi)^3 \times 100 \text{ km}$$

Ci is the basic dynamic load capacity in a specific direction i and Pi is the external load applied in the same specific direction.

Rails	Carriages	Cy N	Cz N	CMx Nm	CMy Nm	CMz Nm
DC 10.54	T4 PFV 25 10 80	3700	1200	32	27	84
	T4 PFV 25 10 120	3700	1200	32	51	158
DC 16.80	T4 PFV 35 16 165	9000	2950	115	185	570
	T4 PFV 35 16 250	9000	2950	115	310	950
DC 18.65	T4 PFV 35 18 150	9000	2950	95	165	510
	T4 PFV 35 18 250	9000	2950	95	315	970
DC 25.95	T4 PFV 50 25 220	17500	6100	290	500	1400
	T4 PFV 50 25 300	17500	6100	290	750	2150

Calculation example: carriage loaded with an external load F

Carriage T4 PFV 50 25 220; F = 2000 N.

The external load F acts in the z-axis direction:

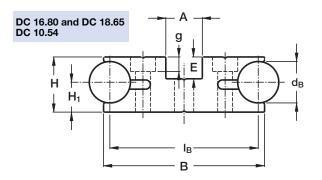
$$Pz = F = 2000 N$$

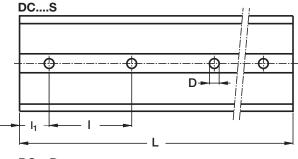
In the table of the "maximum loads" you find that the load capacity Fz for carriage T4 PFV 50 25 220 is equal to 3900 N, so the system is validated against breakage.

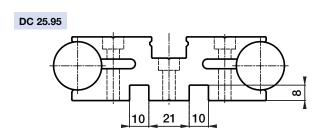
To estimate the system lifetime we proceed as follows: from the table of the "basic dynamic loads" we see that Cz, for the carriage T4 PFV 50 25 220, is equal to 6100 N.

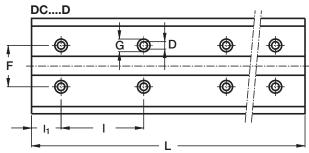
The nominal lifetime will be:

$$L_{10} = (6100/2000)^3 \times 100 = 2837 \text{ km}$$


Important notes:


- in order to reach the calculated lifetime it is important to lubricate the rails;
- for load configurations with many loads and moments acting at the same time in different directions, please refer to the calculation examples you can find at the beginning of the catalogue or contact our Technical department.




Guide rails DC

Туре						D	imensioi (mm)	ns						of ine	nents rtia ⁽²⁾ n ⁴)	Weight (kg/m)
	d _B	I _B	В	Н	H ₁	Α	Е	D	G	g	F	ı	l ₁	J _x	J _y	
DC 10.54 S (3)	10	54	57	19.5	13	25	10.5	6.5	-	-	-	150	30	2.16	20.5	3.15
DC 10.54 D (3)	10	54	57	19.5	13	30	2.16	20.5	3.15							
DC 16.80 S (3)	16	80	86	25.5	14.5	150	30	9.6	85	7.1						
DC 16.80 D ⁽³⁾	16	80	86	25.5	14.5	18	9.5	6.5	11	6.3	54	150	30	9.6	85	7.1
DC 18.65 S	18	65	70.5	24	13	16	9.5	8.5	-	-	-	150	30	6.1	34.7	7
DC 18.65 D	18	65	70.5	24	13	16	9.5	6.5	11	6.3	36	150	30	6.1	34.7	7
DC 25.95 S (3)	25	95	101	33	18	19	13	10.5	-	-	-	150	30	21.8	142.2	13.5
DC 25.95 D (3)	25	95	101	33	18	19	13	6.5	11	6.3	58	150	30	21.8	142.2	13.53
						max len	gth in sir	ngle elem	nent L=6	000 (1)						

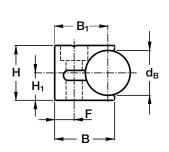
- 1) Longer rails are supplied in sections with ground butt joints and, on request, with pin connection
- 2) Inertia value based on equivalent aluminium yield 70000 N/mm²
- 3) Available with stainless steel shafts

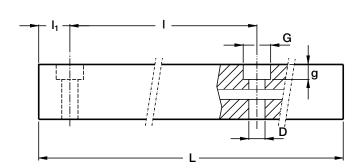
Hole layout

- holes according to catalogue (S or D)
- finishes to drawing (NZ)
- without holes (NF)

Optional features

- ground one end (R)
- ground both ends (RR)
- stainless steel shafts (NX) (3)
- chromium plated shafts (CH)


Example of standard designation: DC2595 S 2010 NX


See page 17 for standard codification

Guide rails C

Туре					[Dimension (mm)	S					of ine	nents ertia ⁽²⁾ m ⁴)	Weight (kg/m)
	d _B	В	B ₁	Н	I	l ₁	J _x	J _y						
C 10 (3)	10	16.9	15.4	30	0.4	0.3	1.1							
C 18	18	24	21.3	22	11	6.5	11	6.3	7.8	150	50	1.7	1.1	2.8
C 22	22	28	25	26.5	13.5	6.5	11	6.3	9	160	50	3.5	2	4.1
C 30 (3)	30	36	32.5	36	19	9	15	8.3	11.5	180	60	11.1	5.6	7.6
					max	length in s	single elem	ent L=600	0 (1)					

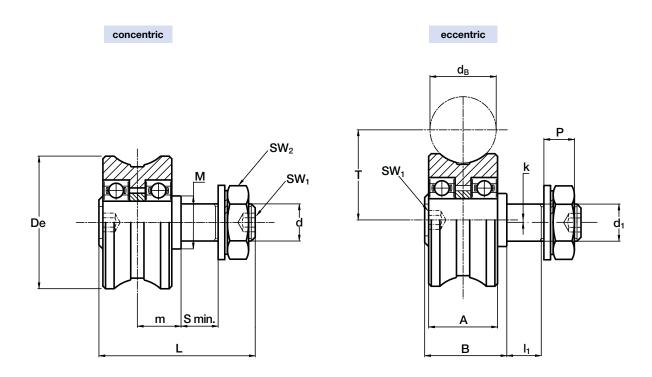
- 1) Longer rails are supplied in sections with ground butt joints and, on request, with pin connection
- 2) Inertia value based on equivalent aluminium yield 70000 N/mm²
- 3) Available with stainless steel shafts

Hole layout

- holes according to catalogue (SB)
- finishes to drawing (NZ)
- without holes (NF)

Optional features

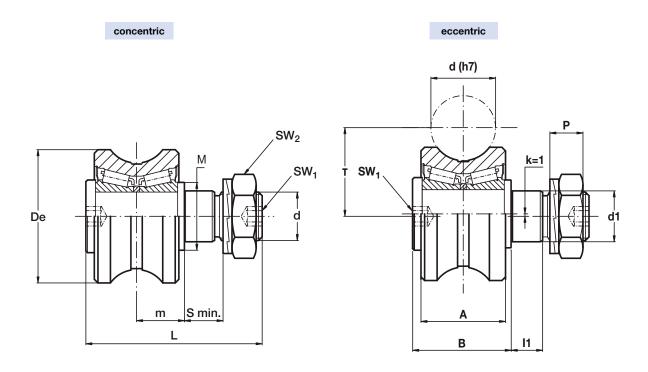
- ground one end (R)
- ground both ends (RR)
- stainless steel shafts (NX) (3)
- chromium plated shafts (CH)


Example of standard designation: C10 2060 SB

See page 17 for standard codification

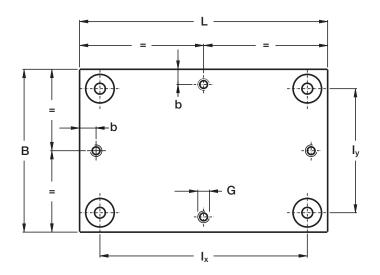
Guide rollers PFV with "gothic arch" profile

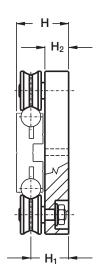
Т		Dimensions (mm)											Recommended					
concentric	eccentric	De	d_{B}	d ₁ (1)	d	Т	m	S min.	Р	L	Α	В	l ₁	М	SW ₁	SW ₂	k	pairings
PFV 25.10 ⁽³⁾	PFVR 25.10 ⁽³⁾	25	10	8	M8x1.25	15.5	7.5	11	9	34.8	12	14.8	10	12	4	13	0.75	C 10/DC 10.54
PFV 35.16 ⁽³⁾	PFVR 35.16 (3)	35	16	10	M10x1.25	23	12	12	10.7	45.3	18	22.3	11	15	4	17	0.75	DC 16.80
PFV 35.18 ⁽³⁾	PFVR 35.18 (3)	35	18	10	M10x1.25	24	12	12	10.7	45.3	18	22.3	11	15	4	17	0.75	C 18/DC 18.65
PFV 43.22 (3)	PFVR 43.22 (3)	43	22	12	M12x1.5	29	14	13	12.5	52	23	27	12	18	5	19	1	C 22
PFV 50.25 (3)	PFVR 50.25 (3)	50	25	14	M14x1.5	34	16.5	14	13.5	59	26	31	13	20	6	22	1	DC 25.95
PFV 60.30	PFVR 60.30	60	30	16	M16x1.5	41	19.5	17	14	69.5	31	36.5	16	30	8	24	1	C 30


Ту	pe	Dynamic load (N)	Limit (N	loads N)	Life coe	fficients	Torque wrench ⁽²⁾ settings	Weight (g)	
		C _w ⁽⁴⁾	radial F _r axial F _a		X	Y	(Nm)	,	
PFV 25.10	PFVR 25.10	1 850	1 080	200	1	4.4	8	42	
PFV 35.16	PFVR 35.16	4 550	1 500	350	1	4.4	20	115	
PFV 35.18	PFVR 35.18	4 550	1 500	350	1	4.4	20	113	
PFV 43.22	PFVR 43.22	7 600	3 150	750	1	4	26	210	
PFV 50.25	PFVR 50.25	8 800	4 240	940	1	4	44	335	
PFV 60.30	PFVR 60.30	15 700	5 360	1 350	1	4.3	64	570	

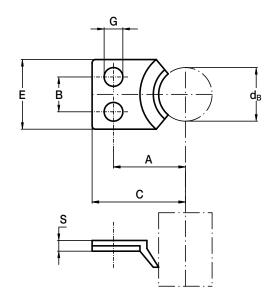
- 1) Housing bore tolerance: H7
- 2) The torque wrench settings are given for non-lubricated threads; for lubricated threads, multiply figure by 0.8
- 3) Available in stainless steel (suffix NX)
- 4) Cw basic load for 100 km
- 5) The guide rollers are complete with self-locking washers and hexagonal nut (DIN 439B) for fitting
- 6) Pressure angle α for load calculation: 60°
- 7) NBR seals, RS type

Ту	ре	Dimensions (mm)								ım)							
concentric	eccentric	De	d-h7	d ₁ ⁽¹⁾	d	Т	m	S min.	Р	L	Α	В	l ₁	М	SW ₁	SW ₂	k
RKO 55.20	RKOR 55.20	55	20	21	M 20 x 1.5	32.9	19.8	15	13.4	73	35	41	14	28	8	30	1
RKO 55.25	RKOR 55.25	55	25	21	M 20 x 1.5	34.3	19.8	15	13.4	73	35	41	14	28	8	30	1
RKO 62.30	RKOR 62.30	62	30	21	M 20 x 1.5	39.6	19.8	15	13.4	73	35	41	14	28	8	30	1
RKO 80.40	RKOR80.40	79	40	36	M 30 x 1.5	50.7	27	19	19.6	100	45	55	18	44	12	46	1


Туре		Dynamic load (N)	Limit (N	loads N)	Life coe	fficients	Torque wrench (Nm) ⁽²⁾	Weight (kg)	
		C _w (5)	radial F _r	axial F _a	X	Υ	settings	(.19)	
RKO 55.20	RKOR 55.20	42 000	11 900	4 000	1	3.3	80	0.6	
RKO 55.25	RKOR 55.25	42 000	11 900	4 000	1	3.4	80	0.6	
RKO 62.30	RKOR 62.30	44 000	11 900	4 000	1	3.7	80	0.7	
RKO 80.40	RKOR 80.40	68 000	31 000	10 000	1	3.2	300	1.6	

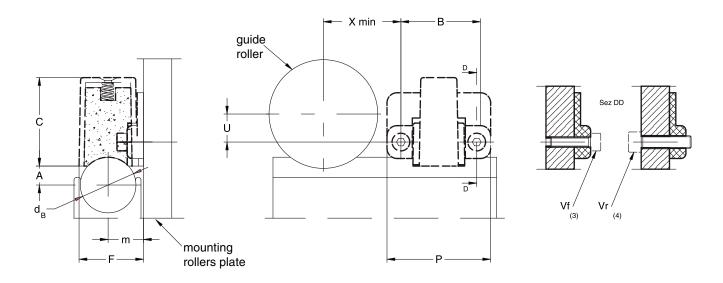

- 1) Housing bore tolerance: H7
- 2) Torque wrench settings are given for non-lubricated threads; for lubricated threads, multiply figure by 0.8
- 3) Standard seals: material NBR, type RS
- 4) On request, the guide rollers can be supplied with Viton seals for operating temperatures up to 120°C (suffix V)
- 5) Cw basic load for 100 km
- 6) The guide rollers is complete with self-locking washers and hexagonal nut for fitting
- 7) Pressure angle α for load calculation: 65°

Carriages T4PFV


Type				I	Dimensions (mm)	:				Weight	Recom- mended pairings	
,	L	В	l _x	l _y	Н	H ₁	H ₂	G	b	(kg)		
T4PFV 25 10 80 (1)	80	120	45	85	41	28	20.5	M8	15	0.69	DC 10.54	
T4PFV 25 10 120 (1)	120	120	85	85	41	28	20.5	M8	15	0.96	DC 10.54	
T4PFV 35 16 165 (1)	165	165	126	126	50.5	36		M8	15	2.1	DC 16.80	
T4PFV 35 16 250 (1)	250	165	211	126	50.5	36	24	M8	15	3.1	DC 16.80	
T4PFV 35 18 150 (1)	150	150	113	113	49	36	24	M8	15	1.8	DC 18.65	
T4PFV 35 18 250 (1)	250	150	213	113	49	36	24	M8	15	2.8	DC 18.65	
T4PFV 50 25 220 (1)	220	220	163	163	63.5	45.5	29	M10	20	5	DC 25.95	
T4PFV 50 25 300 (1)	300	220	243	163	63.5	45.5	29	M10	20	6.4	DC 25.95	

- 1) Available with stainless steel guide rollers (\mathbf{NX})
- 2) Carriages are complete with guide rollers
- 3) Pressure angle α for load calculation: 60°

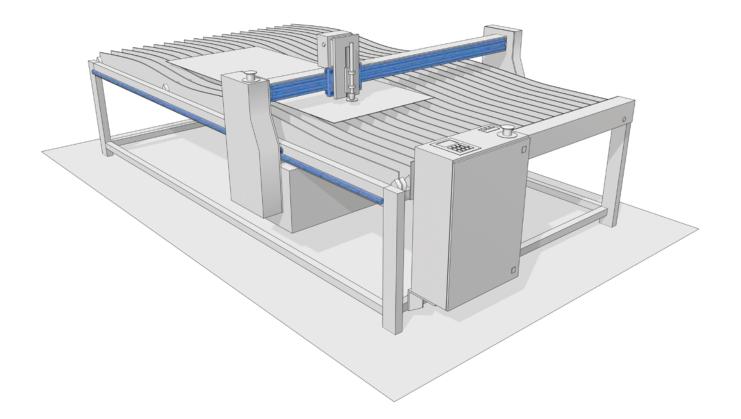
Wiper NAID

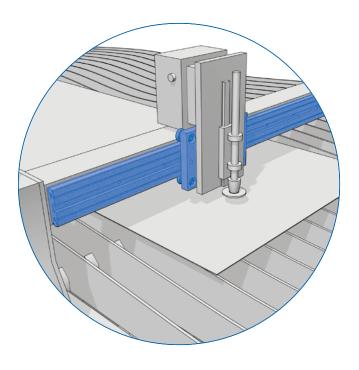


Time				Dimensions (mm)			Recommended	
Type	d _B	E	С	Α	В	G	S	pairings	
NAID 010	10	13	17.5	13.5	6.5	3.5	3	C 10	
NAID 016	16	20	26.5	20.5	10	4.5	3	DC 16.80	
NAID 018	18	20	26.5	20.5	10	4.5	3	C 18/DC 18.65	
NAID 022	22	24	30.0	24.0	14	4.5	3	C 22	
NAID 025	25	28	37.5	30.5	18	4.5	3	DC 25.95	
NAID 030	30	32	45.5	37.5	20	5.5	3	C 30	

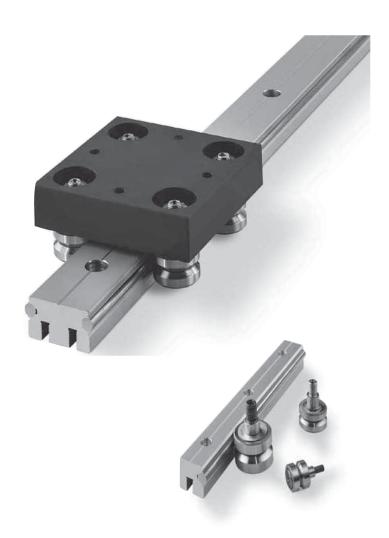
Time					Dime	nsions	(mm)					Weight	Suggested	
Type	Х	U	В	F	m	d в	Α	С	Р	Vf	Vr	(g)	combinations	
LUBC 25.10	18	4.5	25	13	7.5	10	3	22	32.5	M3x12	M4	10	PFV 25.10	
LUBC 35.16	23	9.5	25	22	12	16	5.5	32	32.5	M3x12	M4	15	PFV 35.16	
LUBC 35.18	23	9.5	25	22	12	18	6.5	32	32.5	M3x12	M4	15	PFV 35.18	
LUBC 43.22	29	12	30	25.5	14	22	22	35	41	M4x12	M5	30	PFV 43.22	
LUBC 50.25	32.5	15.5	30	30.5	16.5	25	9	45	41	M4x12	M5	35	PFV 50.25	
LUBC 60.30	37.5	20.5	30	36.5	19.5	30	11	50	41	M4x12	M5	40	PFV 60.30	

- 1) The lubricator is supplied with the felt already lubricated. The lubricant has a mineral oil base
- 2) At the mounting, insert the screws inside the rollers plate, without tighten them, adjust the height of the plastic part in order to put it in contact with the raceways and then block it
- 3) The screws Vf for the frontal mounting are included in the packaging. Arrange two thread holes for dimension Vf in the mounting rollers plate
- 4) The screw for the mounting on the nut side of the roller are not included in the packaging. Arrange on the mounting rollers plate the holes in order to insert the screws Vr


Optional features


- felt without lubricant (D)

Mounting examples


Oxy fuel cutting machine Base-Line C and DC

FWS, FWH System

Guide rails FWS

Туре		Dimensions (mm)												
	d _B	d _B X M g E b m c												
FWS 22	6	34	M 5	16	36	20	14	10						
FWS 32	8	42	M 6	20	45	25	17	12						
FWS 40	10	54	M 8	24	57	30	19	14						
FWS 52	12 66 M 10 32 69 36 24 18													
single guide element L=4500 ⁽¹⁾														

		Screw distance ma	x.	Moments of			
Timo	for 2 screw	channels	for additional holes (NZ)	cr	n ⁴	Weight	
Туре	Distance (mm)	Torque wrench settings (Nm)	Distance (mm)	J _x	J _y	(kg/m)	
FWS 22	190	2	220	2.07	6.01	2	
FWS 32	210	5	240	5.10	14.56	3.3	
FWS 40	250	15	280	11.01	35.26	5	
FWS 52	250	23	280	22.85	74.12	7.2	

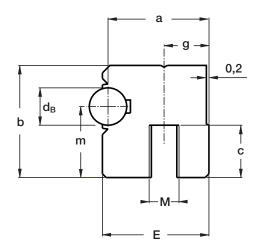
- 1) Longer rails are supplied in sections with ground butt joints at the rods
- 2) Inertia value based on equivalent aluminium yield 70000 N/mm² including shafts

Hole layout

- finishes to drawing (NZ)
- without holes (NF)

Optional features

- ground one end (\mathbf{R})
- ground both ends (RR)
- stainless steel shafts (NX)


Example of standard designation: FWS32/1500 NF

See page 17 for standard codification

Guide rails FWH

Туре		Dimensions (mm)											
	d _B	а	M	g	Е	b	m	С					
FWH 22	6	17	M5	8	18	20	14	10					
FWH 32	8	21	M6	10	22.5	25	17	12					
FWH 40	10	27	M8	12	28.5	30	19	14					
FWH 52	12	33	M10	16	34.5	36	24	18					
			Maximum length o	of single guide eler	ment L = 4 500 ⁽¹⁾								

		Screw distance max.		Moments of	of inertia ⁽²⁾	
Turno	for 1 screv	v channels	for additional holes	cr	n ⁴	Weight
Туре	Distance (mm)	Torque wrench settings (Nm)	Distance (mm)	J _x	J _y	(kg/m)
FWH 22	70	2	120	1.02	0.83	1
FWH 32	60	5	130	2.55	2.05	1.6
FWH 40	97	15	150	5.71	4.75	2.5
FWH 52	120	23	150	10.12	11.85	3.6

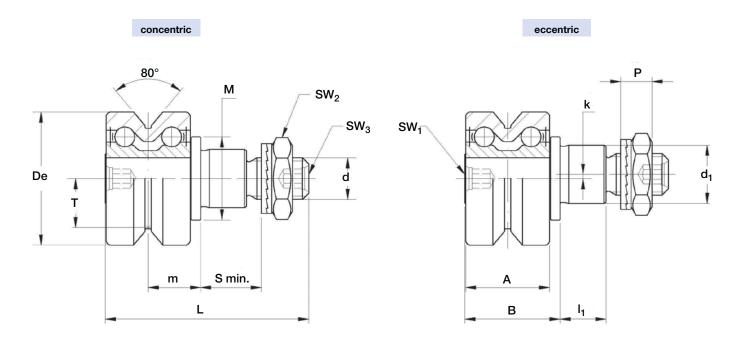
- 1) Longer rails are supplied in sections with ground butt joints
- 2) Inertia value based on equivalent aluminium yield 70000 N/mm² including shafts

Hole layout

- finishes to drawing (NZ)
- without holes (NF)

Optional features

- ground one end (\mathbf{R})
- ground both ends (RR)
- stainless steel shafts (\mathbf{NX})


Example of standard designation: FWH32/1500 NF

See page 17 for standard codification

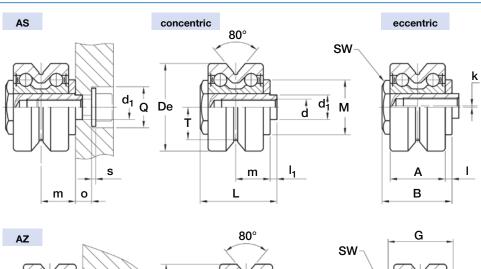
Guide rollers FR..EU

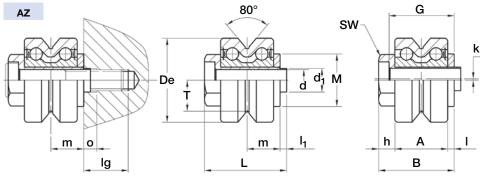
The second state of	- 6 41			-11-1-46	
The sides	or trie	race	are	Silgrilly	Convex

Ту	pe							Dime	ensions	(mm)							
concentric	eccentric	De	d ₁ ⁽¹⁾	d	Т	m	S _{min}	Р	L	Α	В	I ₁	М	SW ₁	SW ₂	SW ₃	k
FR 22 EU ⁽⁴⁾	FRR 22 EU ⁽⁴⁾	22	9	M 6 x 1	7.7	9.4	9	6.5	36.8	15	18	8	14	4	10	3	8.0
FR 32 EU ⁽⁴⁾	FRR 32 EU ⁽⁴⁾	32	14	M 10 x 1.25	11.8	12.6	12	8.5	48.9	20.2	22.9	11	20	4	17	4	1
FR 40 EU ⁽⁴⁾	FRR 40 EU ⁽⁴⁾	40	16	M 12 x 1.5	14.6	15.5	12	10.4	58.5	25	29.5	11	22	5	19	5	1
FR 52 EU	FRR 52 EU	52	21	M 16 x 1.5	19.1	19.8	15	11.4	69.5	32	36.5	14	28	6	24	6	1.5
FR 62 EU	FRR 62 EU	62	27	M 20 x 1.5	22.1	20.8	18.5	12.4	80	33.6	39	17.5	35	8	30	8	2

Ту	pe	Dynamic load (N)	Limit (1	loads N)	Life coe	fficients	Torque wrench settings (2) (Nm)	Weight (g)
		C _w ⁽⁴⁾	radial F _r	axial F _a	x	Υ	3 ()	(3)
FR 22 EU	FRR 22 EU	2 900	1 400	420	1	2	3	45
FR 32 EU	FRR 32 EU	5 800	2 000	800	1	1.9	20	125
FR 40 EU	FRR 40 EU	8 500	3 650	1 400	1	1.9	26	230
FR 52 EU	FRR 52 EU	11 700	8 500	3 000	1	1.9	64	510
FR 62 EU	FRR 62 EU	13 900	11 000	3 500	1	1.9	120	765

- 1) Housing bore tolerance: H7
- 2) The torque wrench settings are given for non-lubricated threads; for lubricated threads, multiply figure by 0.8
- 3) Cw basic load for 100 km
- 4) FR/R 22, 32, 40 are available in stainless steel (NX)


The guide rollers are complete with self-locking washers and hexagonal nut (DIN439B) for fitting Pressure angle α for load calculation: 40° NBR seals RS type



Guide Rollers FR..EU AS, FR..EU AZ

Ту	/pe		Dimensions (mm)																	
concentric	eccentric	De	d1 ⁽¹⁾	d ⁽²⁾	Т	m	L	Α	В	l ₁	- 1	h	М	sw	G	0	Q	Ig (7)	s	k
FR 22 EU AS(6)	FRR 22 EU AS(6)	22	6	M 5	7.7	9.4	21.8	15	19.8	2	1.9	-	14	10	-	4.5	10	-	0	0.5
FR 32 EU AS(6)	FRR 32 EU AS(6)	32	9	M 6	11.8	12.6	28.1	20.2	25.6	2.5	2.5	-	20	17	-	6	15	-	1.5 (4)	0.5
FR 40 EU AS(6)	FRR 40 EU AS(6)	40	11	M 8	14.6	15.5	33.5	25	31	2.5	3	-	22	22	-	6.5	20	-	2 (4)	1
FR 52 EU AS	FRR 52 EU AS	52	16	M10	19.1	19.8	43.2	32	40	3.2	3.8	-	28	27	-	8	24	-	2.5(4)	1.5
FR 62 EU AS	FRR 62 EU AS	62	19	M12	22.1	20.8	46	33.6	41.8	4.2	4	-	35	30	-	9	26	-	2.5(5)	1.5
FR 22 EU AZ ⁽⁶⁾	FRR 22 EU AZ(6)	22	6	5.1	7.7	9.4	23.9	15	21.9	2	1.9	5	14	11	18.9	4	-	13	-	0.5
FR 32 EU AZ ⁽⁶⁾	FRR 32 EU AZ(6)	32	9	8.1	11.8	12.6	31.4	20.2	28.9	2.5	2.5	6.2	20	17	24.9	5	-	17	-	0.5
FR 40 EU AZ ⁽⁶⁾	FRR 40 EU AZ(6)	40	11	10.1	14.6	15.5	38	25	35.5	2.5	3	7.5	22	22	30.5	5	-	26	-	8.0
FR 52 EU AZ	FRR 52 EU AZ	52	16	14.1	19.1	19.8	49.5	32	46.3	3.2	3.8	10.5	28	27	39.3	5.5	-	27	-	1.5
FR 62 EU AZ	FRR 62 EU AZ	62	19	16.1	22.1	20.8	54.5	33.6	50.3	4.2	4	12.7	35	32	42.3	6.5	-	30	-	1.5

Guide roller size	Dynamic load (N)	Limit Io	ads (N)	Life coe	fficients	Weight AS	Weight AZ	On re quest for AZ screw
	Cw ⁽³⁾	radial F _r	axial F _a	X	Υ	(g)	(g)	DIN7984
22	2 900	470	210	1	2	33	31	M5 x 30
32	5 800	1 590	710	1	1.9	95	93	M8 x 40
40	8 500	2 120	940	1	1.9	173	173	M10 x 50
52	11 700	5 830	2 560	1	1.9	374	365	M14 x 60
62	13 900	9 200	3 500	1	1.9	582	587	M16 x 65

- 1) Housing bore tolerance: H7
- 2) Safety threads SPIRALOCK
- 3) Cw basic load for 100 km
- 4) Guide roller with washers DIN134 without screw DIN7984 or DIN912
- 5) Guide roller with washers DIN125 without screw DIN7984 or DIN912
- 6) FR/R 22, 32, 40 AS and AZ are available in stainless steel (NX)

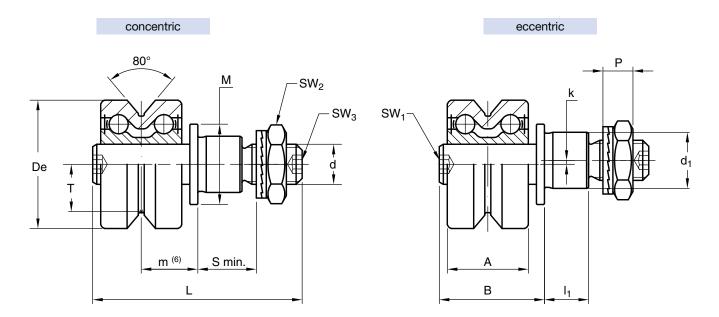
7) AZ: minimum length of the thread engaged

steel = $1 \times d$

cast iron = 1.25 x d

aluminium = $2 \times d$

AS screws length: min = d+o+s; max = m+4+o+s


NBR seals RS type

Pressure angle α for load calculation: 40°

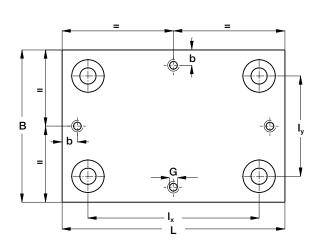
The race ways are slightly convex

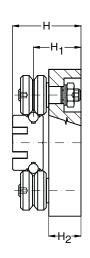
Т	ype	Dimensions (mm)																
concentric	eccentric	De	d ₁ ⁽¹⁾	d	Т	m _{min} (6)	m _{max} (6)	S _{min}	Р	L	Α	В	l ₁	М	SW ₁	SW ₂	SW_3	k
FRL 22 EU ⁽⁵⁾	FRLR 22 EU (5)	22	9	M6 x 1	7.7	9	13	9	6.5	39.3	15	20.5	8	14	4	10	3	0.8
FRL 32 EU (5)	FRLR 32 EU (5)	32	14	M10 x 1.25	11.8	12.1	16.1	12	8.5	52.2	20.2	26.2	11	20	4	17	4	1
FRL 40 EU (5)	FRLR 40 EU (5)	40	16	M12 x 1.5	14.6	14.9	19.9	12	10.4	61.4	25	32.4	11	22	5	19	5	1
FRL 52 EU	FRLR 52 EU	52	21	M16 x 1.5	19.1	19	25	15	11.4	74	32	41	14	28	6	24	6	1.5
FRL 62 EU	FRLR 62 EU	62	27	M20 x 1.5	22.1	19.8	25.8	18.5	12.4	83.6	33.6	42.6	17.5	35	8	30	8	2

	Туре	Dynamic load (N)	Limit load (N)	Limit load Inox version (N) NX	Torque wrench setting (2)	Weight (g)
		C _w ⁽⁴⁾	radial F _r	radial F _r	(Nm)	
FRL 22 EU	FRLR 22 EU	2900	1050	980	3	46
FRL 32 EU	FRLR 32 EU	5800	1700	1550	20	127
FRL 40 EU	FRLR 40 EU	8500	3000	2750	26	233
FRL 52 EU	FRLR 52 EU	11700	7600	-	64	520
FRL 62 EU	FRLR 62 EU	13900	11000	-	120	776

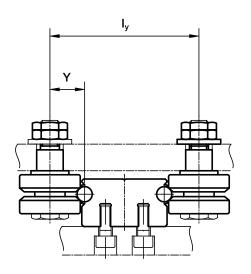
- 1) Housing bore tollerance: H7
- 2) The torque wrench settings are given for non-lubricated threads; for lubricated threads multiply figure by 0.8
- 3) Weight without fittings
- 4) Cw = Basic load for 100 Km 5) Dimensions for stainless steel (**NX**) version
- 6) To ensure a safety and proper functionin the dimension m must not be higher than m max

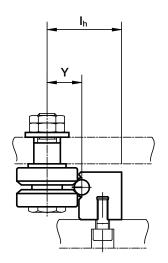
Standard seals: material NBR, RS type


Guide rollers include self-locking washers and hexagonal nut (DIN 439B)


Pressure angle α for load calculation: 40°

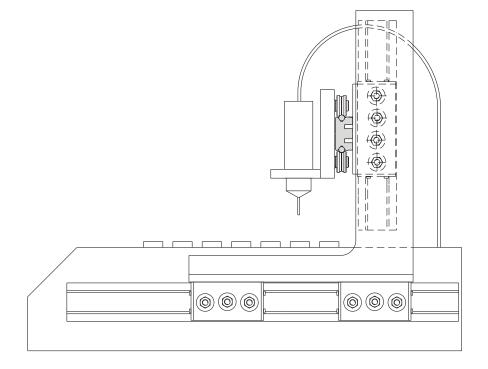
Carriage T4FR





Туре	Dimensions (mm)									Weight	Suggested	
,, ,,	L	В	I _x	l _y	Н	H ₁	H ₂	G	b	(kg)	combinations	
T4FR 22 90	90	90	59	58.7	42.4	28.4	19	M6	15	0.6	FWS 22	
T4FR 22 150	150	90	119	58.7	42.4	28.4	19	M6	15	0.9	FWS 22	
T4FR 32 120	120	120	78	78	58.6	41.6	29	M8	15	1.5	FWS 32	
T4FR 32 180	180	120	138	78	58.6	41.6	29	M8	15	2.1	FWS 32	
T4FR 40 150	150	150	99	98.8	63.5	44.5	29	M8	15	2.6	FWS 40	
T4FR 40 220	220	150	169	98.8	63.5	44.5	29	M8	15	3.4	FWS 40	
T4FR 52 190	190	190	123	123	82.8	58.8	39	M10	20	5.4	FWS 52	
T4FR 52 260	260	190	203	123	82.8	58.8	39	M10	20	6.8	FWS 52	

Guide Rollers combination



Туј	pe	Roller type FR/FRRE	U, FR/FRREU AS, FR/FRR	EU AZ, FRL/FRLREU
		Υ	l _y	I _h
FWS 22	FWH 22	12.4	58.8	29.4
FWS 32	FWH 32	18	78	39
FWS 40	FWH 40	22.4	98.8	49.4
FWS 52	FWH 52	28.4	122.8	61.4

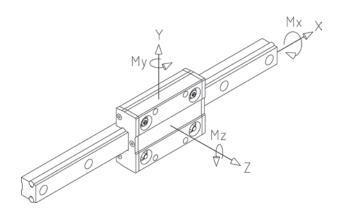
Mounting Examples

Glue dispensing machine

FWN System

System Flexi-Line 645

Aluminium guide rails FWN as well as carriages TA4 and TB4 are the components of this line.


In addition to the standard dimensions that are ISO 645 compatible, the guide system can be adapted to customers' requirements.

Bore holes and threads on the guide rails can be made in any distance required, the carriages may have overlengths and a special hole pattern and all this is also available as corrosion resistance type "NX".

Compared to linear guides made of steel these guide rails and carriages weigh up to 45% less and stand out due to their excellent running performance which minimises the driving power and reduces significantly the cost for motors and controls.

With eccentric bolts the guide rollers of the carriages are kept free from play. However the user also has the possibility to change the settings, for example in case of vibrations, and to apply an individual preload on the guide system. On both sides of the carriages can be mounted end plates with oil-soaked felt seals to ensure low-wear operation.

The following graph applies to the loads indicated in the tables:

MAXIMUM LOAD ON INDIVIDUAL CARRIAGES

The table below shows the maximum load that can be applied to an individual carriage.

Carriage	Fy (N)	Fz (N)	Mx (Nm)	My (Nm)	Mz (Nm)
TA4GLA17.06 TB4GLA17.06	600	400	5	15	20
TA4GLA19.06 TB4GLA19.06	1 700	960	19	33	70

DYNAMIC LOAD OF THE INDIVIDUAL CARRIAGE

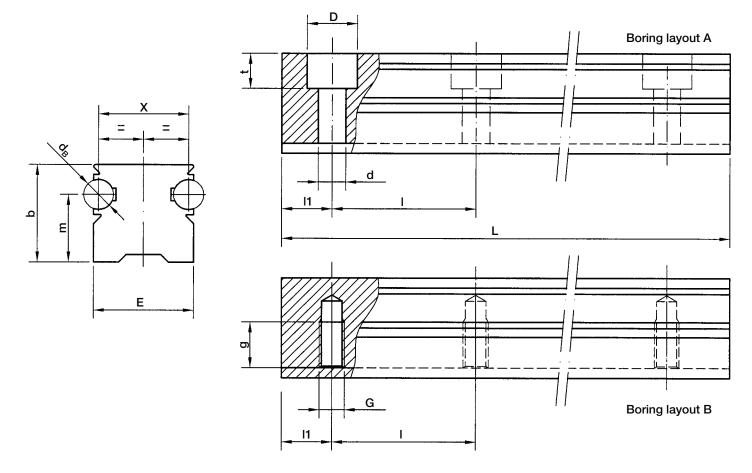
The table below shows the load corresponding to the nominal working life of 100 km.

The nominal working life of the carriage can be determined by the standard bearing formula.

$$L10 = (Ci/Pi)^3 \times 100 \text{ km}$$

Ci is the carrying capacity in a specific direction and Pi is the load applied in the same direction.

Carriage	Cy (N)	Cz (N)	CMx (Nm)	CMy (Nm)	CMz (Nm)
TA4GLA17.06 TB4GLA17.06	2 596	1 445	13	46	84
TA4GLA19.06 TB4GLA19.06	4 920	2 700	30	100	180


Important:

- Values are calculated on the basis of lubricated rails
- For combined loads please proceed as indicated in the calculation examples at the beginning of the catalogue. In case of questions our application engineers will be pleased to assist you.

Guide rails FWN Dimensions according to DIN 645

Dimensions (mm)											Weight		
	d _B	Е	X	D	d	G	g	m	t	b	l ₁	1	(kg/m)
FWN 20	6	20 18 10 5.5 M6 12 13.5 7 19.5 30 60											
FWN 25	6	23	21	11	6.6	M6	12	18	8.5	25.5	30	60	1.8
Max length of single guide element L=5 800 mm (1)													

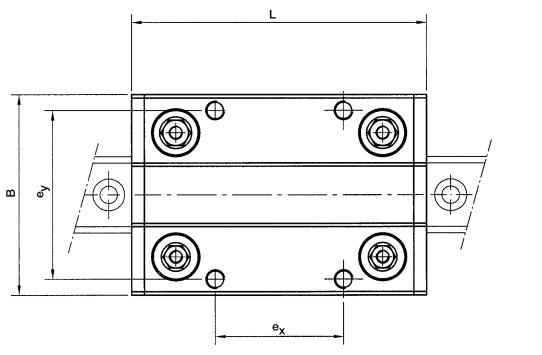
1) Longer rails are supplied in sections with ground butt-joints

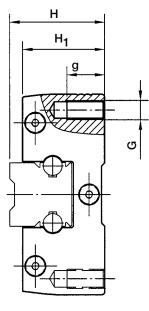
Hole layout

- holes according to DIN (A or B)
- finishes to drawing ($\mbox{\bf NZ})$
- without holes (NF)

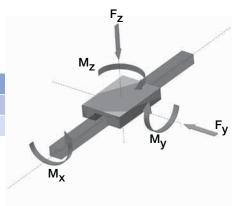
Optional features

- ground one end (\mathbf{R})
- ground both ends (RR)
- stainless steel shafts (NX)


Example of standard designation: FWN20/1000 A


See page 17 for standard codification

Carriage TA4 Dimensions according to DIN 645

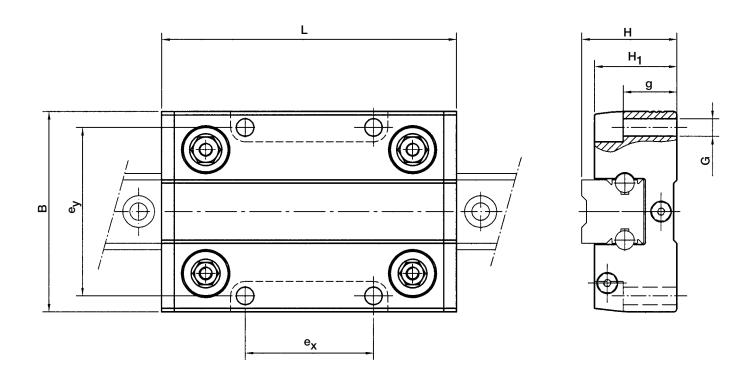


Type				Dimer (m	nsions m)				Weight	Suggested combinations		
,,	В	G	Н	H ₁	L	e _x	e _y	g	(kg)			
TA4GLA 17.06	63	M6	30	26	92	40	53	12	0.3	FWN 20		
TA4GLA 19.06	70	M8	36	31	104	45	57	16	0.4	FWN 25		

Longer carriages on request

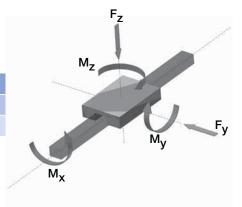
Max load on a single carriage

Carriage	F _y (N)	F _z (N)	M _x (Nm)	M _y (Nm)	M _z (Nm)
TA4GLA 17.06	600	400	5	15	20
TA4GLA 19.06	1 700	960	19	33	70


Optional features

- available with stainless steel guide rollers $(\mbox{\bf NX})$
- available with felts for lubrication, non lubricated (UU). On request the felts can be supplied lubricated.

Carriage TB4 Dimensions according to DIN 645

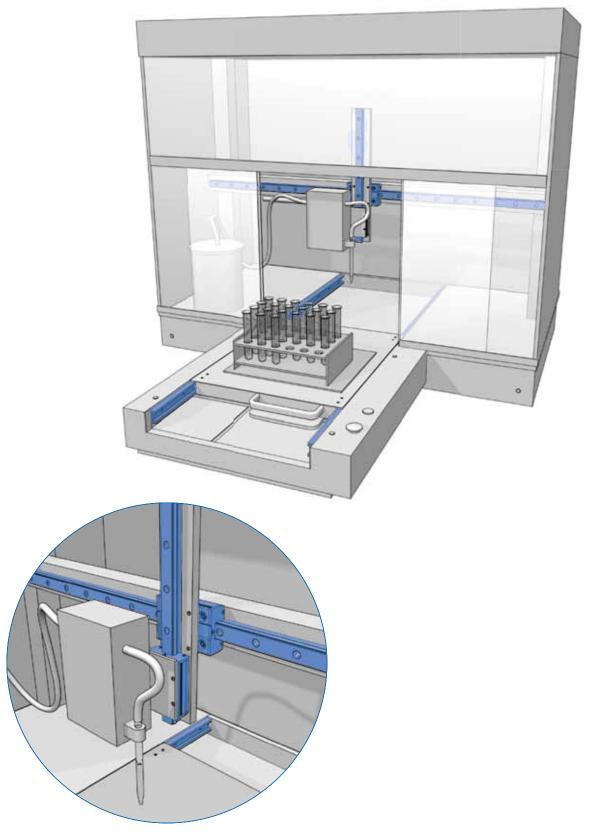


Туре					nsions nm)				Weight	Suggested combinations		
, , , , , , , , , , , , , , , , , , ,	В	G	Н	H ₁	L	e _x	e _y	g	(kg)			
TB4GLA 17.06	63	5.5	30	26	92	40	53	17	0.25	FWN 20		
TB4GLA 19.06	70	6.6	36	31	104	45	57	23.5	0.35	FWN 25		

Longer carriages on request

Max load on a single carriage

Carr	riage	F _y (N)	F _z (N)	M _x (Nm)	M _y (Nm)	M _z (Nm)
TB4GL	A 17.06	600	400	5	15	20
TB4GL	A 19.06	1 700	960	19	33	70

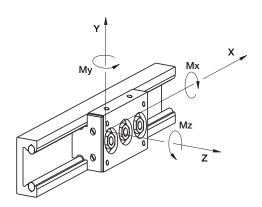

Optional features

- available with stainless steel guide rollers $({\bf NX})$
- available with felts for lubrication, non lubricated (UU). On request the felts can be supplied lubricated.

Mounting examples

Medical equipment Flexi-Line

LM, LML System



LM system

LM system is based on rail, guide rollers and carriages to provide a complete guiding system.

Guide rails and rollers can be used as single elements. In most cases the application is based on standard carriages and cursors.

Referring to the axis system below, the load capacities are tabulated as follows:

MAX LOAD ON SINGLE CARRIAGE

The following table shows the maximum load that can be applied on a single carriage.

Guide	Carriage	Fy N	Fz N	Mx Nm	My Nm	Mz Nm
LM 30	C3 RCL 17 06 065	1000*	300	3.3	5.8	10
	C4 RCL 17 06 085	1000	600	6.4	10	20
LM 40	C3 RCL 24 06 085	1810*	520	7.6	15	26
	C4 RCL 24 06 114	1810	1040	15	25	52
LM 65	C3 RCL 35 10 115	4160*	1200	26	45	78
	C4 RCL 35 10 152	4160	2400	50	75	155
LM 90	C4 RCL 35 10 180	4160	2400	75	95	200
LM 120	T4 RCL 35 10 150	4160	2400	110	120	200
	T4 RCL 35 10 220	4160	2400	110	200	350
	T4 RCP 42 10 150	5250	3030	140	150	260
	T4 RCP 42 10 220	5250	3030	140	250	440
LM 180	T4 PFV 43 22 180	6300	3120	185	200	400
	T4 PFV 43 22 280	6300	3120	185	350	715

^{*} Fy directed to load the two concentric guide rollers

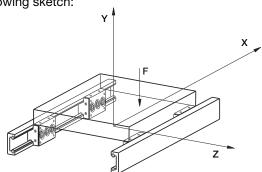
The maximum load is based on the guide roller data (stud and bearing strength) and on maximum contact pressure between rail and roller of 1250 N/mm². Loading is considered to be acting in a single plane or axis only.

BASIC DYNAMIC LOAD OF SINGLE CARRIAGE

The following table shows the nominal load that corresponds to a nominal life of the bearing at 100 km.

The nominal carriage life can be estimated from the standard bearing formula.

$$L_{10} = (Ci/Pi)^3 \times 100 \text{ km}$$


Ci and Pi are the basic capacity and load applied for a specific direction.

Guide	Carriage	Cy N	Cz N	CMx Nm	CMy Nm	CMz Nm
LM 30	C3 RCL 17 06 065 C4 RCL 17 06 085	3000* 3000	830 1670	9 18	16 26	30 60
LM 40	C3 RCL 24 06 085 C4 RCL 24 06 114	8400* 8400	2340 4670	34 68	67 110	122 244
LM 65	C3 RCL 35 10 115 C4 RCL 35 10 152		4050 8110	86 172	152 250	296 593
LM 90	C4 RCL 35 10 180	15800	8110	263	325	770
LM 120	T4 RCL 35 10 150 T4 RCL 35 10 220 T4 RCP 42 10 150 T4 RCP 42 10 220	000	8110 8110 14130 14130	370 370 650 650	400 685 700 1195	780 1335 1190 2030
LM 180	T4 PFV 43 22 180 T4 PFV 43 22 280	15190 15190	5300 5300	320 320	335 600	965 1725

^{*} Cv directed to load the two concentric guide rollers

Calculation example: four carriages C3RCL 35 10 115 platform

The common configuration is shown in the here following sketch:

The platform moves along the two guide rails and has a load of "F" acting at 100 mm and 50 mm from the carriage centre.

Data: guide LM 65 and carriages C3RCL3510115

$$\begin{array}{lll} I_x = 400 \text{ mm} & I_z = 300 \text{ mm} \\ F = 6 \ 000 \ N & X_F = 100 \ \text{mm} & Z_F = 50 \ \text{mm} \end{array}$$

In this configuration the load on the most heavily loaded carriage is Py and can be calculated using the following formula:

$$P = \frac{F}{4} + \frac{F \cdot X_F}{2 \cdot I_x} + \frac{F \cdot Z_F}{2 \cdot I_z} = 2750 \text{ N}$$

The load Fy shown in the "max loads" table is 4160N (carriages mounted with eccentric roller on top), so the system is validated against breakage.

To estimate the system life we proceed as follows: from the nominal life table Cy = 15800 N

$$L_{10} = (15800/2750)^3 \times 100 = 18900 \text{ km}$$

Important note: to reach this value it is important to lubricate the rail, otherwise fretting corrosion between rail and roller can reduce the expected life.

Auto-aligning system

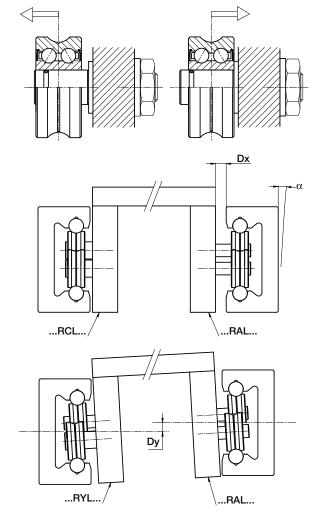
Systems

Auto-aligning systems are assembled with guide rollers RAL type on LM system carriages tables.

The guide rollers RAL type allows axial displacement of the roller on the pin. An "O" ring retains the roller in position during the mounting.

Auto-aligning systems compensate for opposite rail misalignment errors. They are useful for mounting inaccurately aligned structures or those structures subject to flexure.

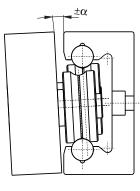
Carriages C3RAL C4RAL T4RAL

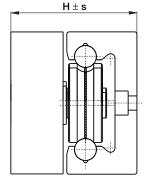

Is used to compensate for Dx misalignment between opposite rails. The table or carriage with all guide rollers RAL/RALR type can move towards or away from the rail. Type RAL provides radial support only. Axial load, transverse to the direction of travel, is reacted by carriage type RCL on the opposite rail.

Carriages C3RYL C4RYL T4RYL

Rail misalignment Dy requires the ability for both carriages to rotate. The table or carriage RYL type, with guide rollers RCL/RCP in contact with a steel shaft of the LM rail and guide rollers RALR type in contact with the opposite shaft, allows carriage rotation ensuring at the same time the transverse direction control.

The maximum Dy value is dependent on the distance between the rails and the tabulated maximum angle ' α ' for that carriage.

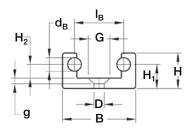

Note: RYL carriage axial load capability is lower than the same size RCL/RCP carriage.

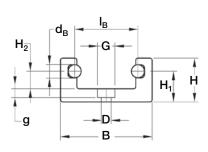


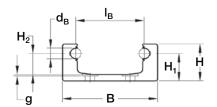
Max transverse moving allowed by auto-aligning tables and carriages

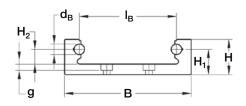
Carriage	e code ⁽¹⁾	α max (°)	S max (mm)	H nominal (mm)	Rail
C3RAL 17 06 065	C4RAL 17 06 085	1	0.8	27.5	LM 30
C3RYL 17 06 065	C4RYL 17 06 085	1	-	27.5	LIVI 30
C3RAL 24 06 085	C4RAL 24 06 114	1	1	0F 7	LM 40
C3RYL 24 06 085	C4RYL 24 06 114	1	-	35.7	LM 40
C3RAL 35 10 115	C4RAL 35 10 152	1	1	58	LM 65
C3RYL 35 10 115	C4RYL 35 10 152	1	-	56	LIVI 05
-	C4RAL 35 10 180	1	1	60.5	LM 90
-	C4RYL 35 10 180	1	-	00.5	LIVI 90
T4RAL 35 10 150	T4RAL 35 10 220	0.3	1	58.5	
T4RYL 35 10 150	T4RYL 35 10 220	0.3	-	30.5	LM 120
T4RAL 42 10 150	T4RAL 42 10 220	0.75	1.5	65.5	LIVI 120
T4RYL 42 10 150	T4RYL 42 10 220	0.75	-	03.5	

- 1) See light load systems Nadella catalogue for table and carriage dimensions.
- Variations of dimension H exceeding ± s can compromise bearing axial moving and decrease the roller limit load, Fr.

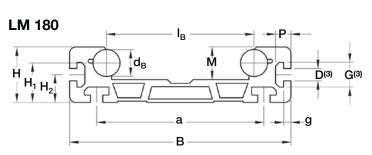


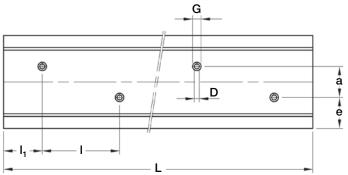

Guide rails LM





LM 40 LM 65





LM 120

LM 90

Type							Di	mensio (mm)	ons							Moments (cr		Weight (kg/m)	
	d _B	I _B	В	Н	H ₁	H ₂	М	D	G	g	а	е	Р	I	l ₁	J _x	J _y	(kg/m)	(mm)
LM 30 ⁽⁴⁾	6	21.5	32	15.5	10.5	6	11	4.5	9.5	2.5	-	16	-	80	40	0.5	3	1.1	6 000
LM 40 ⁽⁴⁾	6	29	42	20	14	8	14	4.5	8	4	-	21	-	100	50	1.2	8.8	1.5	6 000
LM 65 ⁽⁴⁾	10	42.5	65	32	23.5	13.5	22	6.5	11	6	-	32.5	-	100	50	8.8	54.9	4.1	6 000
LM 90 ⁽⁴⁾	10	65	90	35	26	20	29	9	15	0.5	38	26	-	100	50	16.4	160.2	4.7	6 000
LM 120 ⁽⁴⁾	10	92	120	33.5	24	14	23.5	6.5	11	6	40	40	-	100	50	14.8	311.6	6	6 000
LM 180	22	120	180	45	32	22.5	26.5	10(3)	20.1(3)	6	136	-	12.5	-	_	53.3	1 096.6	13.1	6 000

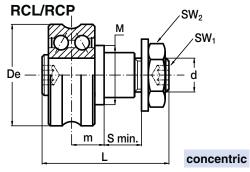
- 1) Longer rails are supplied in sections with ground butt joints and, on request, with pin connection
- 2) Inertia value based on equivalent aluminium yield 70000 N/mm²
- 3) Slot for nut DIN 508
- 4) available with stainless steel shafts (suffix NX)

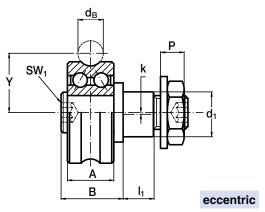
Hole layout

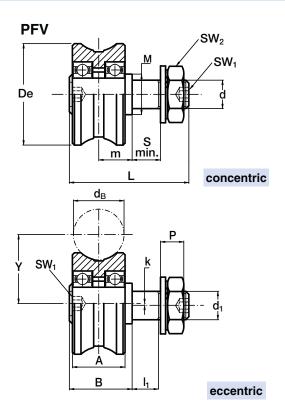
- holes according to catalogue (SB)
- finishes to drawing (NZ)
- without holes (NF)

Optional features

- ground one end (R)
- ground both ends (RR)
- chromium plated shafts (CH)
- stainless steel shafts (NX)


Example of standard designation: LM 40/1720 NF

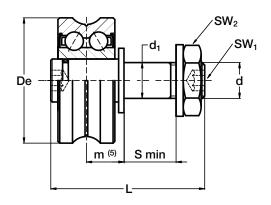

See page 17 for standard codification

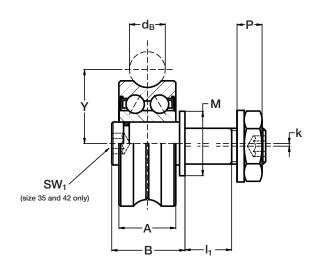


Guide rollers RCL, RCP, PFV

Ту	/pe								Dimens	sions (mm)								Suggested
concentric	eccentric	De	d _B	d ₁ ⁽¹⁾ conc.	d ₁ ⁽¹⁾ ecc.	d	Y	m	S min.	Р	L	Α	В	l ₁	M	SW ₁	SW ₂	k	combination
RCL 17.06 ⁽³⁾	RCLR 17.06 ⁽³⁾	17	6	5	6.5	M 5x0.8	10.5	6	6	3.7	21	7	11	5.2	9	2.5	8	0.25	LM 30
RCL 24.06 ⁽³⁾	RCLR 24.06(3)	24	6	8	11	M 8x1.25	14	7.7	7	5.6	28.2	11	14.7	6.5	14	4	13	0.5	LM 40
RCL 35.10 ⁽³⁾	RCLR 35.10 ⁽³⁾	35	10	10	10	M10x1.25	20.65	10.5	14	7	43	15.9	20.5	13	18	5	17	0.75	LM 65
RCP 42.10	RCPR 42.10	42	10	17	17	M12x1.25	24	12.5	12	9.5	50	19	24.5	11	25	6	19	0.75	LM 120
PFV 43.22 ⁽³⁾	PFVR 43.22 ⁽³⁾	43	22	12	12	M12x1.5	29	14	13	12.5	52	23	27	12	18	5	19	1	LM 180

Ту	/pe	Dynamic load (N)	Limit (N	loads N)	Life coe	Life coefficients				
		C _w ⁽⁴⁾	radial Fr	axial F _a	X	Υ	(Nm)	(g)		
RCL 17.06	RCLR 17.06	1 400	530	150	1	3.28	3	20		
RCL 24.06	RCLR 24.06	3 600	1 600	460	1	2.52	8	40		
RCL 35.10	RCLR 35.10	7 800	2 400	650	1	2.93	20	130		
RCP 42.10	RCPR 42.10	12 000	4 300	1 100	1	2.73	24	185		
PFV 43.22	PFVR 43.22	7 600	3 150	750	1	4	26	205		

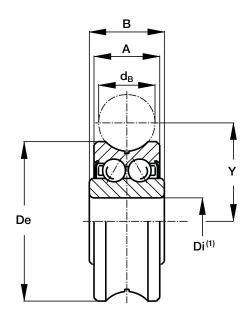

- 1) Housing bore tolerance: H7
- 2) The torque wrench settings are given for non-lubricated threads; for lubricated threads, multiply figure by 0.8
- 3) Available in stainless steel (suffix NX) with RS seals type
- 4) Cw basic load for 100 km
- 5) The guide rollers are complete with self-locking washers and hexagonal nut (DIN 439B) for fitting
- 6) Pressure angle α for load calculation: 60°
- 7) Standard shields ZZ type for RCL and RCP; NBR seals type RS for PFV


Guide rollers RAL

concentric

eccentric

T	уре								Dimen	sions (mm)									Suggested
concentric	eccentric	De	d _B	d ₁ (1) conc.	d ₁ (1) ecc.	d	Υ	m min	m max	S min.	Р	L	Α	В	l ₁	М	SW ₁	SW ₂	k	combination
RAL 17.06 (6)	RALR 17.06 (6)	17	6	5	6.5	M5x0.8	10.5	6	7.6	6	3.7	20.5	7	10.5	5.2	9	2.5	8	0.25	LM30
RAL 24.06(6)	RALR 24.06(6)	24	6	8	11	M8x1.25	14	7.7	9.7	7	5.6	27.5	11	14	6.5	14	4	13	0.5	LM40
RAL 35.10(6)	RALR 35.10(6)	35	10	10	10	M10x1.25	20.65	10.5	12.5	14	7	43	15.9	20.5	13	18	5	17	0.75	LM65
RAL 42.10	RALR 42.10	42	10	17	17	M12x1.25	24	12.5	15.5	12	9.5	49	19	23.5	11	25	6	19	0.75	LM120

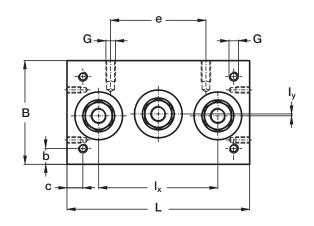

	Туре	Dynamic load (N) C _w ⁽³⁾	Limit loads (N) ⁽⁵⁾ radial F _r	Torque wrench ⁽²⁾ settings (Nm)	Weight (g)
RAL 17.06	RALR 17.06	1 400	450	3	20
RAL 24.06	RALR 24.06	3 600	1 400	8	40
RAL 35.10	RALR 35.10	7 800	2 100	20	130
RAL 42.10	RALR 42.10	12 000	3 400	24	185

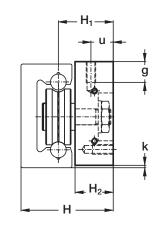
- 1) Housing bore tolerance: H7
- 2) The torque wrench settings are given for non-lubricated threads; for lubricated threads, multiply figure by 0.8
- 3) Cw basic load for 100 km
- 4) The guide rollers are complete with self-locking washers and hexagonal nut for fitting
- 5) To ensure a safety and proper functioning the dimension m must not be higher than m max
- 6) Available in stainless steel (suffix \mathbf{NX}) with \mathbf{RS} seals type
- 7) Standard shields ZZ type

Guide wheels GLA

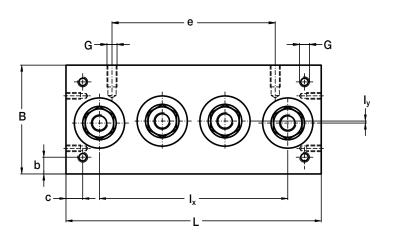
Туре				nsions m)		
, , , , , , , , , , , , , , , , , , ,	De	d _B	Di ⁽¹⁾	Υ	Α	В
GLA 17.06 ⁽⁴⁾	17	6	5	10.5	7	8
GLA 24.06 ⁽⁴⁾	24	6	8	14	11	11
GLA 35.10 ⁽⁴⁾	35	10	12	20.65	15.9	15.9
GLA 35.12	35	12	12	21.75	15.9	15.9
GLA 42.10	42	10	12	24	19	19
GLA 47.10	47	10	15	26.65	19	19
GLA 52.16	52	16	20	31.5	20.6	22.6

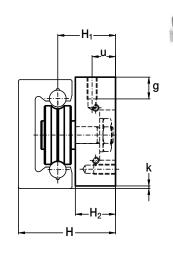
Туре	Dynamic load (N)	Limit (۲	loads N)	Life coe Pa/Pr		Weight (g)
	C _w ⁽²⁾	radial C _{or}	axial C _{oa}	X	Υ	(3)
GLA 17.06	1 400	840	200	1	3.28	10
GLA 24.06	3 600	2 300	600	1	2.52	20
GLA 35.10	7 800	4 600	1 200	1	2.93	80
GLA 35.12	7 800	4 600	1 200	1	2.93	80
GLA 42.10	12 000	6 900	2 100	1	2.73	100
GLA 47.10	14 000	7 900	2 500	1	2.61	170
GLA 52.16	19 000	10 500	3 300	1	2.73	230


- 1) Tolerance of Diameter Di: +0 / -0.008 mm
- 2) Cw basic load for 100 km
- 3) Pressure angle α for load calculation: 60°


- 4) Available in stainless steel (suffix **NX**) with RS seals type
- 5) Standard shields ZZ type (GLA 52.16 with RS seals type)

Carriage C3RCL, C3RAL, C3RYL



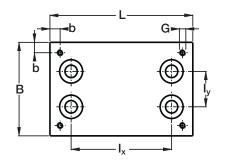


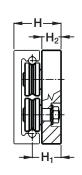
Туре							Dimens (mr								Weight	Suggested combina-
,,	L	В	l _x	l _y	Н	H ₁	H ₂	G	g	b	С	u	е	k	(kg)	tions
C3RCL 17 06 065	65	32	40	0.5	27.5	17	11	M4	6	4	6	5.5	24	0.5	0.1	LM 30
C3RCL 24 06 085	85	42	58	1	35.7	21.7	14	M5	8	6	6	7	35	1	0.2	LM 40
C3RCL 35 10 115	115	65	75	1.2	58	34.5	24	M6	10	10	10	14	60	1.5	8.0	LM 65

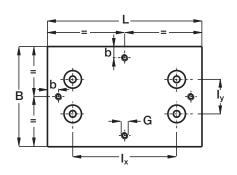
- 1) Dimensions in the table are correct also for carriages C3 RAL, C3 RYL
- 2) Available with stainless steel guide rollers (suffix NX)

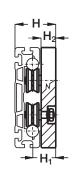
Carriage C4RCL, C4RAL, C4RYL

Туре							Dimens (mn								Weight	Suggested combina-
	L	В	l _x	l _y	Н	H ₁	H ₂	G	g	b	С	u	е	k	(kg)	tions
C4RCL 17 06 085	85	32	60	0.5	27.5	17	11	M4	6	4	6	5.5	44	0.5	0.15	LM 30
C4RCL 24 06 114	114	42	87	1	35.7	21.7	14	M5	8	6	6	7	60	1	0.25	LM 40
C4RCL 35 10 152	152	65	112.5	1.2	58	34.5	24	M6	10	10	10	14	90	1.5	1	LM 65
C4RCL 35 10 180	180	90	135	23.7	60.5	34.5	24	M6	10	10	10	14	120	2	1.5	LM 90

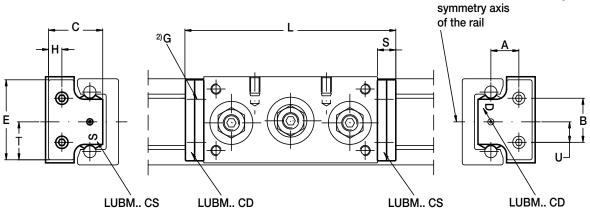

- 1) Dimensions in the table are correct also for carriages C4 RAL and C4 RYL
- 2) Available with stainless steel guide rollers (suffix NX)




Carriage T4RCL, T4RCP, T4PFV, T4RAL, T4RYL


T4RCL T4RCP

T4PFV



Туре				[Dimensions (mm)						Recommended
	L	В	l _x	l _y	Н	H ₁	H ₂	G	b	(kg)	pairing
T4RCL 35 10 150	150	120	99	50.7	58.5	34.5	24	M8	10	1.6	LM 120
T4RCL 35 10 220	220	120	169	50.7	58.5	34.5	24	M8	10	2.2	LM 120
T4RCP 42 10 150	150	120	99	44	65.5	41.5	29	M8	15	2	LM 120
T4RCP 42 10 220	220	120	169	44	65.5	41.5	29	M8	15	2.7	LM 120
T4PFV 43 22 180	180	180	127	62	74	42	28	M10	20	3.1	LM 180
T4PFV 43 22 280	280	180	227	62	74	42	28	M10	20	4.5	LM 180

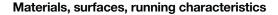
¹⁾ Dimensions valid also for T4RAL and T4RYL

Lubricator LUBM

Type					Di	mensions (mm)						Suggested combinations
,	Α	В	U	E	Т	Н	С	G	S	C3 RCL	C4 RCL	with the rails
LUBM 030	9.5	16	8	30	15	6.5	20.5	M2.5	9	83	103	LM 30
LUBM 040 CD/CS	13.7	21.5	10	40	19	7	27	МЗ	9	103	132	LM 40
LUBM 065 CD/CS	20.5	30	15	63	30	13	44.5	M4	9	133	170	LM 65

¹⁾ The lubricator is supplied with the felt already lubricated. The lubricant has a mineral oil base - 2) One lubricator for packaging. Countersunk head screws for the mounting are already in the packaging - 3)The lubricator can be mounted on carriages RCL, RAL and RYL - (4) Optional felt without lubricant (D)

System LML


Application

Aluminium guide rails LML as well as RCL guide rollers with a plastic-coated outer ring are the components of this line.

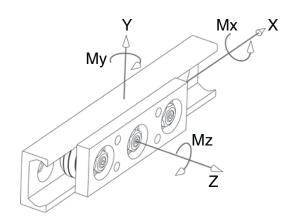
LML can be used whenever extremely compact dimensions, simple linear motion and an economic solution are required.

LML system is suitable for manual and low precision movements, for safety doors, for the adjustment of cameras and sensors and many other products.

Applications can be found amongst others in mechanical engineering, medical and food engineering or object monitoring.

The guide rail, made of extruded aluminium, has a hard anodised surface. This grey-coloured protective coating ensures a significant protection against wear and corrosion. In addition, it has good tribological characteristics.

The guide rollers are made of corrosion-resistant bearing steel and their outer rings are coated with a special polyamide material.


This material combination contributes to a further improvement of the already known good running characteristics of Nadella roller guides and makes possible an absolutely low-noise linear motion without any stick-slip. In contrast to steel to steel combinations, the plastic coating of the guide rollers is slightly flexible and allows higher production tolerances and thus a cost-efficient production.

Load rating and working life

The carrying capacity of the system is determined by the surface pressure between the plastic coating and the aluminium guide rail.

The working life is not calculated.

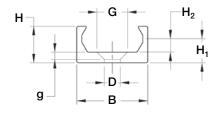
The following graph applies to the loads indicated in the tables:

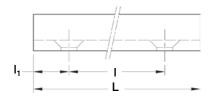
MAXIMUM LOAD ON INDIVIDUAL CARRIAGES

The table below shows the maximum static load that can be applied to an individual carriage for up to 100 hours without leading to permanent deformation of the outer rings. For short stress (<2s) and under dynamic load the values can be doubled.

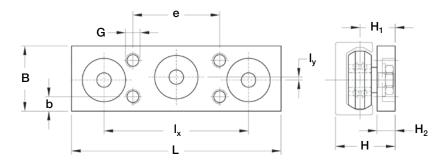
Carriage	Fy (N)	Fz (N)	Mx (Ncm)	My (Ncm)	Mz (Ncm)
C3RCL 16 NX	150*	30	12.5	60	150
C4RCL 16 NX	150	60	25	95	300

^{*} Fy with effect on the two concentric rollers.


Option sliding guide

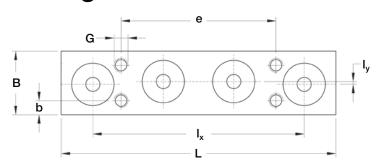

For mostly static applications such as adjusting devices or for non-critical linear movements a suitable polyamide slide with incorporated lubricant is available. Please contact our application engineers.

Guide Rails LML


Hole layout

- holes according to catalogue (SB)
- holes according to drawing (NZ)
- without holes (NF)

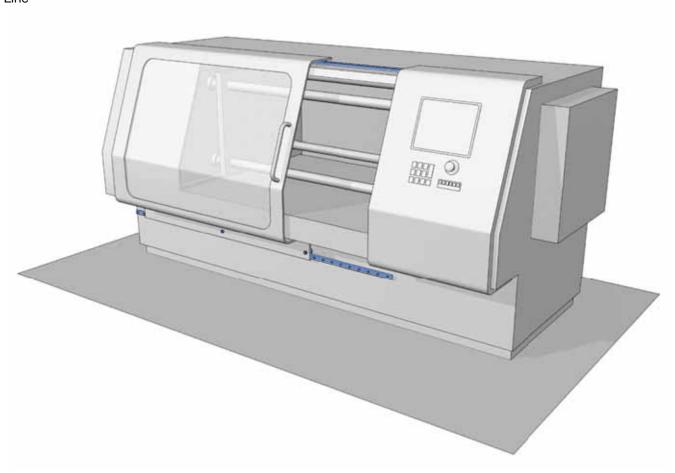
Туре				Dim	nensions (ı	mm)				Moments (cr	of inertia ⁽¹⁾ m ⁴)	Weight (kg/m)	L _{max} (mm)
	В	Н	H1	H2	D	G	g	- 1	l1	Jx	Jy	(119/11)	(11111)
LML 20	20	10.3	6.8	3.8	4.5	9.5	2.5	80	40	0.068	0.427	0.235	2800

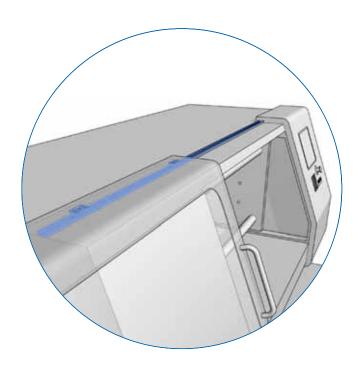

¹⁾ Inertia value based on E module for aluminium 70 000 N/mm². Surface hard anodised

Carriage C3RCL 16 NX

Carriage C4RCL 16 NX

Time					Dimensi	ons (mm)					Weight
Туре	L	В	lx	ly	Н	H1	H2	G	b	е	(g)
C3RCL 16 NX	58	18	40	0.8	16.5	9.75	5	M4	4	24	33
C4RCL 16 NX	78	18	60	0.8	16.5	9.75	5	M4	4	44	44


Corrosion-resistant design


Example: standard rail **LML20 1200 SB** standard carriage **C3RCL16NX**

Mounting example

Protective doors on machine tool U-Line

Product index (in alphabetic order)

Product	Description	Page
ALS	Alignment device for LS guides on C-Line system	81
BL	Carriage with burnished body for the ROLBLOC system	42
BLDS	Carriage BL with discharge system block	43
С	Rail composed by an aluminium body and one shaft in steel, with a single raceway for Base-Line system	98
C3RAL, C4RAL	Carriages with body in anodised aluminium with 3 or 4 guide rollers type RAL for auto-aligning system U-Line	126
C3RAN, C4RAN, C5RAN, C6RAN	Carriages with body in steel with 3,4,5 and 6 guide rollers for LS guide of the auto-alignement C-Line	90-91-92-93
C3RAS, C4RAS, C5RAS	Carriage with body in anodised aluminium with 3, 4 or 5 guide rollers type RAS for auto-aligning system C-Line	87-88-89
C3RCL, C4RCL	Carriage with body in anodised aluminium with 3 or 4 guide rollers type RCL for U-Line system	126
C3RCL16 NX, C4RCL16 NX	Carriages with 3, 4 anti-corrosion rollers covered in plastic for guides LML 20	129
C3RCN, C4RCN, C5RCN, C6RCN	Carriages with steel body with 3, 4, 5 or 6 RCN guide rollers for LS guides of auto-alignement C-Line	90-91-92-93
C3RCS, C4RCS, C5RCS	Carriages with body in anodised aluminium with 3, 4 or 5 guide rollers type RCS for auto-aligning system C-Line	87-88-89
C3RYL, C4RYL	Carriage with body in anodised aluminium with 3 or 4 guide rollers type RCL and RAL for auto-aligning system U-Line	126
C3RYN, C4RYN, C5RYN, C6RYN	Carriages with "rotating" steel body and with 3, 4, 5, 6 RCN and RAN guide rollers	90-91-92-93
DC	Rail composed by an aluminium body and two shafts in steel, with two raceways for Base-Line system	97
DIST FS	Spacers for rails FS, FSH and FSR	59
FG, FGU	Guide rollers with needle roller bearings (FGU), for GP guides	34-35
FK	Guide wheel with tapered roller bearings for GP rails of Heavy-Line system	31
FKU	Guide wheel with tapered roller bearings for GU rails of Heavy-Line system	22
FKX	Guide wheel with tapered roller bearings for FSX rails of V-Line system	56
FKY	Guide wheel with tapered roller bearings for FS and FSH rails of V-Line system	56
FREU	Guide roller with ball bearings for FS and FSH rails of V-Line system, and FWS and FWH rails of Base-Line system	52-108
FREU AS/AZ	Floating guide rollers with ball bearings for FS and FSH rails of V-Line system, and FWS and FWH rails of Base-Line system	53-109
FRLEU	Floating guide rollers with needle roller bearings for FS and FSH rails of V-Line system, and FWS and FWH rails of Base-Line system	57-110
FRNEI	Guide roller with needle roller bearings for FS and FSH rails of V-Line system	54
FSM, FSHM	Rail in steel with ground raceways, for V-Line system	49-51
FSMT, FSHMT	Rail in steel with sandblasted raceways, for V-Line system	48-50
FSRM	Circular rail in steel, for Multi-Motion-Line system	67
FSRO	Oval circuit composed of linear and circular pieces of rail for Multi-Motion-Line system	69
FSRQ	Ring circuit composed of linear and circular pieces of rail for Multi-Motion-Line system	70
FSXM	Rail in steel with ground raceways, for V-Line system	51
FSXMT	Rail in steel with sandblasted raceways, for V-Line system	50
FWH	Rail composed by an aluminium body and one shaft in steel, with a single raceway for Base-Line system	107
FWN	Rail composed by an aluminium body and two shafts in steel, with two raceways for Flexy-Line 645 system	115
FWS	Rail composed by an aluminium body and two shafts in steel, with two raceways for Base-Line system	106
GC	Guide roller with needle roller bearings for GP rails of Heavy-Line system	32-33
GLA	Guide wheel with double row of balls with oblique contact, with "gothic arch" profile for U-Line system	125
GPM	Rail in steel , ground raceways for Heavy-Line system	29
GPMC	Rail in steel , rough ground raceways for Heavy-Line system	28
GUM	Rail in steel , ground raceways for Heavy-Line and Rolbloc system	20-41
GUMT	Rail in steel , sandblasted raceways for Heavy-Line and Rolbloc system	20-41
LM	Rail composed by an aluminium body and two shafts in steel, with two internal raceways for U-line system	122
LML	Rail totally in aluminium with two internal raceways for U-line system	129
LS	Rails totally in steel with internal hardened raceways ofr C-Line system	82
LUBC	Lubricator for Base-Line system (guide rollers running on C and DC rails)	103
LUBM	Lubricator for U-Line system (carriages running in LM rails)	127
LUBP	Lubricator for Heavy-Line system (guide rollers running on GP rails)	36
LUBU	Lubricator for Heavy-Line system (guide rollers running on GU rails)	24
LUBX, LUBY	Lubricator for V-Line system (guide rollers running on FS and FSH rails)	60-61
NAID	Wipers for C and DC rails of Base-Line system	102
PFV gothic profile	Guide roller with "gothic arch" profile, based on ball bearings, for C and DC rails of Base-Line system, and LM rails of U-Line system	99-123
PK	Guide roller with tapered roller bearings for GP rails of Heavy-Line system	30

Product index (in alphabetic order)

Product	Description	Page
PR	Adjustment plates for BL carriages of Rolbloc system	44
RAL	Floating guide rollers with "gothic arch" profile, with a double row of balls with oblique contact, for LM rails of U-Line system	124
RAN	Floating guide rollers with balls for LS guide of C-Line system	86
RAS	Floating guide rollers with balls for LS rails of C-Line system	84
RCL	Guide rollers with "gothic arch" profile, with a double row of balls with oblique contact, for LM rails of U-Line system	123
RCN	Guide rollers with balls for LS guide of C-Line system	85
RCP	Guide rollers with "gothic arch" profile, with a double row of balls with oblique contact, for LM rails of U-Line system	123
RCS	Guide rollers with balls profile, for LS rails of C-Line system	83
RKO	Guide rollers with tapered roller bearings, with "gothic arch" profile for C and DC rails of Base-Line system	100
RKU	Guide rollers with tapered roller bearings, for GU rails of Heavy-Line system	21
RKUL	Floating guide rollers with tapared roller bearings for GU rails of heavy line system	23
RKX	Guide rollers with tapered roller bearings, for FSX rails of V-Line system	55
RKY	Guide rollers with tapered roller bearings, for FS and FSH rails of V-Line system	55
RKYL, RKXL	Floating guide rollers with tapared roller bearings for FS rails of V-Line system	58
RKY	Guide rollers with tapered barings for FS and FSH guides for V-Line systems	53
RPT	Wipers for Rolbloc BL carriages	45
SAG	Guide pins for the mounting alignment of GU rails of Heavy-Line system	25
TA4, TB4	Carriages with anodised aluminium body with four guide rollers type GLA for FWN rails of Flexi-Line system	116-117
T4FR	Carriages with anodised aluminium body with four guide rollers type FREl for FWS rails Base-Line system	111
T4PFV	Carriages with anodised aluminium body with four guide rollers type PFV with "gothic arch" profile for C and DC rails of Base-Line system, and LM rails of U-Line system	101-127
T4R	Carriages with fixed guide rollers Steering carriage for FSRM circular rails of Multi-Motion-Line system	71 72
T4RAL	Carriages with black anodised aluminium body with four floating guide rollers type RAL with "gothic arch" profile for LM rails of U-Line system	127
T4RCL, T4RCP	Carriages with black anodised aluminium body with four guide rollers type RCL or RCP with "gothic arch" profile for LM rails of U-Line system	127
T4RYL	Carriages with black anodised aluminium body with four guide rollers type RCL/RCP and RAL with "gothic arch" profile for LM rails of U-Line system	127

Suffix index (in alphabetic order)

Standard hole pattern according to the catalogue for GP rails
Hollow shafts optional for rails C, DC and LM
Standard hole pattern according to the catalogue for GP rails
Chromium plated shafts
Felt without lubricant
Synthetic sealer for GC
Ground profile
Surface zinc-plated for LS rails (C-Line)
Ground profile
Rough ground profile (for GP rails)
Metallic sealer for FGU
Sandblasted profile
Rails without holes
Stainless steel version for guide rollers or guide rails
Chemical Nickel-plating
Finishes to drawing
Ground on one end
Ground on both ends
Holes for DC guide
Standard hole pattern according to the catalogue
Felts for lubrication available (for carriages TA4 and TB4 of Flexi-Line 645 system)
Seals in Viton

With us you will benefit from ...

... prime quality for highest demands

Well-known customers rely on the reliability and longevity of our products for sophisticated applications.

... customer service at the highest level

Our sales engineers cooperate closely with the experts of our customers and bring in their special knowledge, their experience and technical possibilities.

... high industry know-how

For many years renowned companies from all industries of mechanical and plant engineering as well as automation engineering are among the customers of Nadella.

... security of supply

Modern warehouse logistics ensure a high supply availability both for standard linear guides and individual solutions.

... wide product range

Nadella offers the full range of linear guide sytems – from in-house production to the well-known brands THK and Schneeberger.

... international networking

Today Nadella has a wide network of distributors in all import industrial countries in Europe, Asia and the United States.

Nadella sales engineers also are present worldwide to ensure customer-oriented advice, supply and service.

...many years of experience

More than 50 years Nadella that means expertise and experience at the highest level.

... and what can we do for YOU?

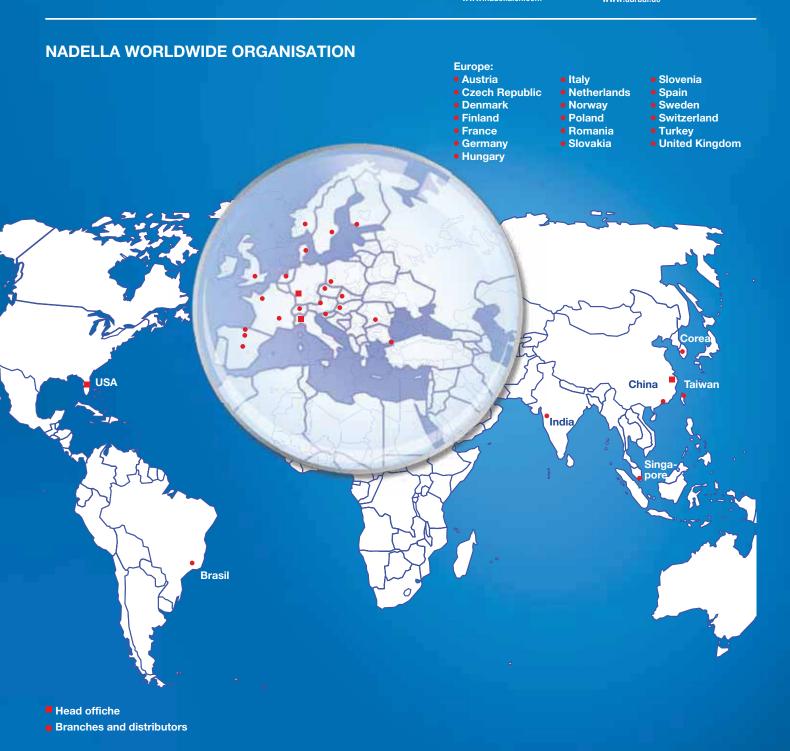
Nadella S.r.l.

Via Melette, 16 20128 Milano Tel. +39 02.27.093.297 Fax +39 02.25.51.768 customer.service@nadella.it www.nadella.it

■ Nadella GmbH

Rudolf-Diesel-Straße 28 71154 Nufringen Tel. +49 (0)70 32 95 40-0 Fax +49 (0)70 32 95 40-25 info@nadella.de www.nadella.de

Nadella Inc.


14115-63 Way North Clearwater Florida 33760-3621 USA Toll Free +1 844 537 0330 Fax +1 844 537 0331 info@nadella.com www.nadella.com

Nadella Linear Shanghai Co. Ltd.

No. 3456 South Pudong Road 200125 Shanghai Tel. +86 21 5068 3835 Fax +86 21 5038 7725 info@nadella.cn.com www.nadella.cn.com

Durbal Metallwarenfabrik GmbH.

Verrenberger Weg 2-2a 74613 Öhringen Tel. +49 (0)7941 9460-0 Fax +49 (0)7941 9460-90 info@durbal.de www.durbal.de

