

TSUBAKI EMERSON CAM CLUTCH

TSUBAKI CAM CLUTCH

TSUBAKI offers the most complete and versatile selection of one-way clutches in the industry.

Cam Clutches are precision devices which lock the inner and outer races, through the wedging action of cams, to transmit torque in one direction of rotation; and overrun in the opposite direction. These units are often referred to as freewheels, sprags, overrunning, backstop or one-way clutches, depending upon their application.

Design Features Full Cam Complement

The full complement of cams provide the maximum number of load transmitting members per given diameter. The result is a greater torque capacity size-for-size than other clutches.

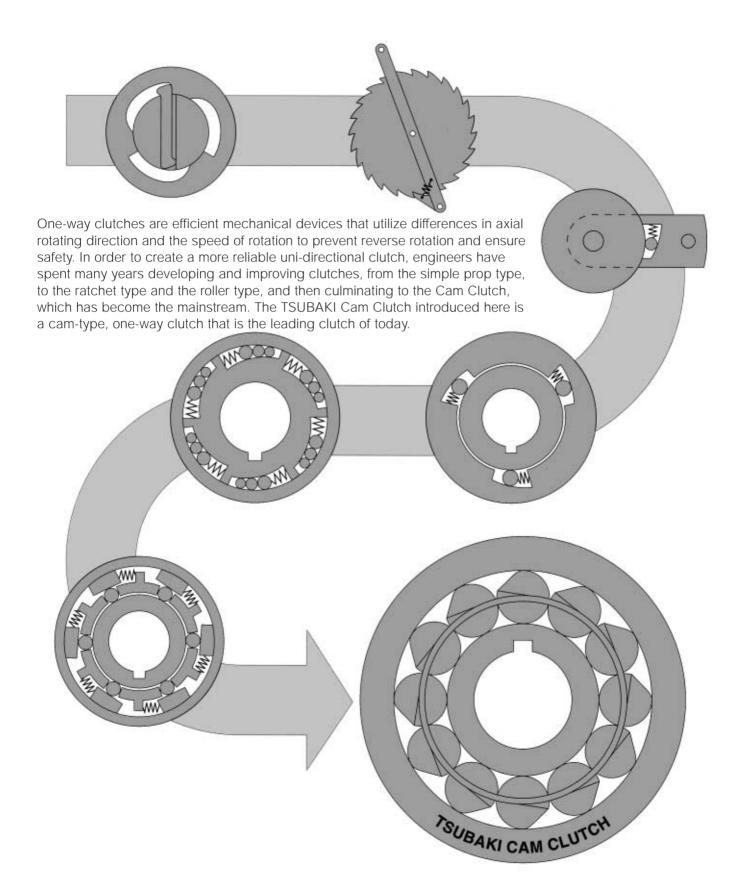
Cam Design

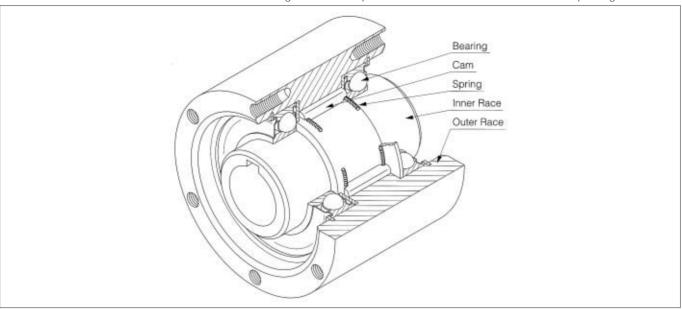
Precision formed cams made of a special alloy steel provide extra long wear and fatigue life.

High Quality Components

The clutch races are made of high-quality alloy steel with high surface hardness and core toughness. The races are precision ground, provide excellent concentricity and surface finish to obtain accurate cam rotation.

MZ, MZ-G, MZEU Page 22 to 31	200 Series	BB Series Page 33 34	PB Series Page 37
MZ Series clutch is prelubricated with a special grease and requires no maintenance. Ideal for general applications. The outer race of the MZ-G series is machine finished. MZEU series clutch is European style model.	200 Series clutch is shaft- mounted and prelubricated with a special grease. The shaft must be supported by two bearings.	BB series clutch has the bearing characteristics and dimensions of #62 type ball bearing. This design provides easy handling and installation. Ideal for general applications.	PB Series clutch is packed with a special grease for general applications. The outer race has provision for mounting gears, pulleys, and sprockets.
MZ: Bore Range: ø15 to ø70 mm Torque Range: 186 to 3,040 N·m MZ-G: Bore Range: ø15 to ø70 mm Torque Range: 186 to 3,040 N·m MZEU: Bore Range: ø12 to ø150 mm Torque Range: 60 to 33,800 N·m	Bore Range: ø16.5 to ø79.3 mm Torque Range: 39 to 1,390 N·m	Bore Range: ø15 to ø40 mm Torque Range: 29 to 260 N·m	Bore Range: ø10 to ø45 mm Torque Range: 29 to 2,110 N⋅m


LD Page 38	MX Series	MI-S Series Page 41	PO, PG, PS Page 42 Series
LD Series clutch is packed with a special grease and requires no maintenance. This model is easily installed and ideal for light-duty applications.	MX Series clutch is best suited for indexing applications. This model ensures long life and accurate intermittent motion at the driven race.	The MI-S Series has special surface-treated cams for use in large feed angle indexing applications.	These series are designed for use in printing machines, but can be used for general applications as well. PO and PG Series have swing arms. PS Series provides a precision feed action for seal printing machines.
Bore Range: ø10 to ø30 mm Torque Range: 5 to 49 N·m	Bore Range: ø22 to ø70 mm Torque Range: 78 to 784 N·m	Bore Range: ø20 to ø30 mm Torque Range: 43 to 196 N⋅m	Torque Range: PO: 44 to 441 N·m PG: 19 to 58 N·m PS: 196 to 392 N·m



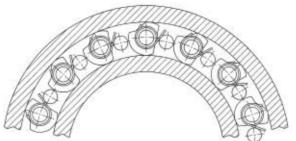
Taking Advantage of Differences in Rotating Direction and Speed... TSUBAKI Cam Clutches

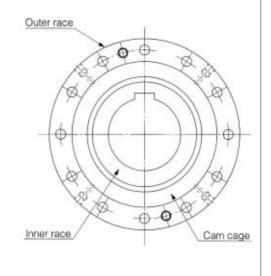
■ STANDARD SPRAG TYPE CAM CLUTCH CONSTRUCTION

The figure shows a representative model from the MZ Series for explaining construction.

Major Component Parts

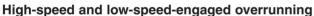
The major parts of the Cam Clutch are the cams, inner race, outer race, springs and bearings. Each of these parts play an important role in the function of the Cam Clutch. All parts are made of carefully selected materials, have undergone appropriate heat treatment, and have passed strict quality control checks.


Part	Appearance	Function
Cam		A number of cams set regularly in between the inner and outer races function as props or sliders depending on the relative rotating directions of the inner and outer races. This action causes engagement (clutching) and disengagement (overrunning) of the clutch inner and outer races. The cams are the vital component of a Cam Clutch, and they are available in various models and types to suit a variety of applications.
Inner Race Outer Race		The inner and outer sliding faces of the races are hardened and precision-ground into a perfectly round cylinder to enable them to withstand the compressive stress generated during engagement with the cam and sliding abrasion when overrunning.
Spring	0	Compressed springs are set at both ends of the cams to ensure that all of the cams contact the inner and outer races at all times. Thus, the cams are always ready for immediate engagement. This is extremely important so as to ensure that the load is spread evenly across all cams when they engage with the inner and outer races.
Bearing		The bearings maintain concentricity of the inner and outer races and bear the radial load for the engagement of the cams and the inner and outer races. Maintaining concentricity is particularly important to ensure that the load is spread equally and simultaneously over the cams at the time of engagement.


■ BR SERIES CONSTRUCTION

NON-CONTACT DESIGN EXTENDS SERVICE LIFE

Greatly Increased Service Life


Made possible by TSUBAKI's extensive experience in mechanical power transmission, the cam used in the BR Cam Clutch offers a unique cross section that provides positive mechanical engagement only when needed. Otherwise, the Cam Clutch rotates freely with absolutely no mechanical contact in the clutch mechanism. The result is a greatly increased service life compared to conventional types.

Backstop applications with high-speed overrunning

When the Cam Clutch is stationary, the cam locks the inner and outer races together (figure 1). When the inner race (load side) overruns at a high speed, the cam disengages by releasing from the inner race (figure 2). When the inner race stops, the cam rotates back into an engaged position. If the inner race tries to rotate in the reverse direction, the cams then serve as a prop between the anchored outer race and inner race to prevent the reverse rotation and provide backstopping.

When the Cam Clutch is stationary, the cam locks the inner and outer races together (figure 1). When the inner race (load side) overruns at a high speed, the cam disengages by releasing from the inner race (figure 2). When the high-speed rotation of the inner race stops and the inner race begins to rotate slowly, the cam rotates back into an engaged position. Then when you start to drive the outer race at low speed of rotation, the cams serve as a prop and drive the inner race at the same low speed of rotation.

A more economical design.

The open-type BR series features a simple design in which the Cam Clutch mechanism is incorporated in a cage between standard dimension inner and outer bearing races. This allows the Cam Clutch to be easily and economically integrated into a wide variety of mechanical systems. A package-type Cam Clutch is also available to reduce maintenance demands.

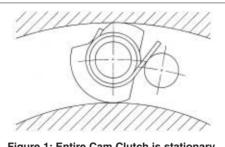
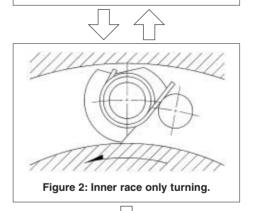
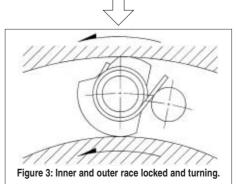
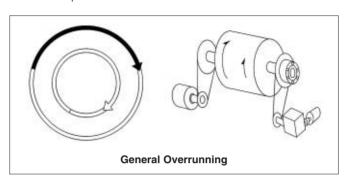




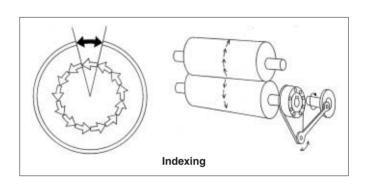
Figure 1: Entire Cam Clutch is stationary.

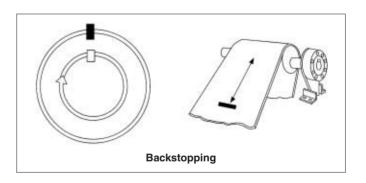
■ MODES OF OPERATION

TSUBAKI Cam Clutches are precision devices which lock to transmit torque in one direction of rotation, but overrun (freewheel) in the opposite direction of rotation. All the series of clutches utilize the same principles of operation. Since clutch applications encompass a variety of load and speed characteristics, TSUBAKI Cam Clutches are manufactured in a range of capacities and styles, which are designed to provide the best functional characteristics for performing in the following three basic modes of operation:

1. General overrunning

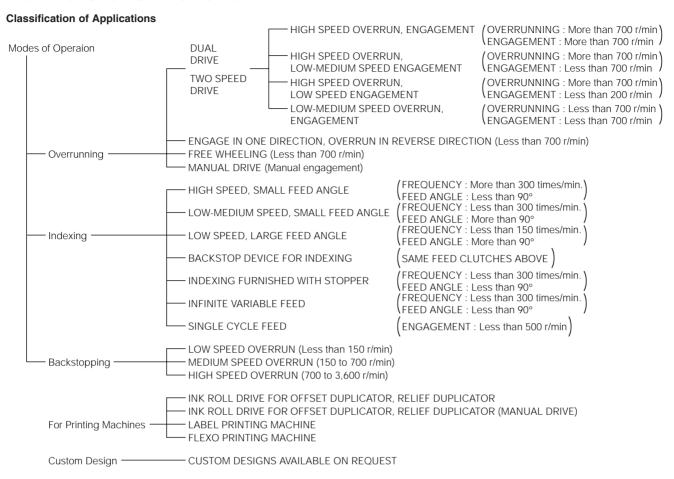

Clutches used in this type of application overrun at either the inner or outer race during the majority of the clutch operating time, and are occasionally called upon to lock up and drive. A typical application is a two-speed drive, where an electric motor and a geared motor are connected to a single driven shaft through one-way clutches. The machine can be driven by either the electric motor or geared motor. When the geared motor drives at low speed, the clutch engages. When the electric motor drives the machine, the clutch overruns. The clutch automatically switches between low speed and high speed.




In this mode of operation, reciprocating motion applied to the driving race of the clutch is transformed into unidirectional intermittent motion, at the driven race. For example, on a feeding roller, the clutch is mounted on the roller and a torque arm is connected to the driving race of the clutch. A crank motion mechanism provides reciprocating motion to the driving race. The clutch drives in the forward stroke (index) and overruns on the return stroke, resulting in intermittent unidirectional motion of the feeding roller.

3.Backstopping

In backstop applications, the clutches are used to prevent reverse rotation of drive shafts, which may cause damage to machinery and other expensive equipment. With the outer race of the clutch anchored stationary, the inner race can overrun freely in one direction of rotation. Reverse rotation is instantaneously prevented by the automatic engagement of the clutch. Typical backstop applications are in conveyor systems and gear reducers.


Typical Applications

Air cleaning plants
Agricultural machines
Bucket elevators
Compressors
Conveyors
Cranes and hoists
Dry cleaning machinery
Duplicator equipment
Fish net machines

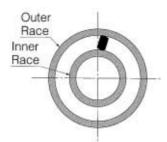
Heat-treatment furnaces
Induced draft fans
Multi-state conveyors
Packaging machinery
Printing machinery
Pumps
Punch presses and feeders
Power plants

Refinery equipment
Speed reducers
Standby power units
Textile looms
Two-speed grinders
Two-speed shiftovers
Washing machines
Wire winding machinery

■ CAM CLUTCH SELECTION CHART

Series Selection

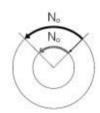
Overrunn	ing																				С	: SUI	TABLI	E @ :	MOST SUIT	ABLE
APPLICA	TION	MZ (G)	MZEU	200	ВВ	РВ	LD	MDEU	MX	MI-S	РО	PG	PS	BS	BS-R	BSEU	BR (P)	BREU	MG	MI	MR	MG-R	MZ-C	MG-C	OB-ON, SF SN, S, PN	ТВ
DUAL DRIVE	HIGH SPEED OVERRUN, ENGAGE	0	0																				0		0	
	HIGH SPEED OVERRUN, LOW MEDIUM SPEED ENGAGE	0	0																		0		0		0	
TWO	HIGH SPEED OVERRUN, LOW SPEED ENGAGE	0	0														0	0			0		0		0	0
SPEED DRIVE	LOW-MEDIUM SPEED OVERRUN, ENGAGE	0	0	0	0	0	0	0											0				0	0		
	IN ONE-WAY DIRECTION, N IN REVERSE DIRECTION	0	0	0	0	0	0	0											0	0			0	0		
FREE WH	HEELING	0	0	0	0	0	0	0											0	0			0	0		
MANUAL	. DRIVE	0	0	0	0	0	0	0				0											0			
Indexing																										
HIGH SP	EED, SMALL FEED ANGLE								0																	
LOW-MEDI	UM SPEED, SMALL FEED ANGLE	0	0	0	0	0	0	0	0	0	0	0								0						
LOW SPI	EED, LARGE FEED ANGLE									0																
BACKST	OP DEVICE FOR INDEXING	0	0	0	0	0	0	0	0	0																
INDEXINO	FURNISHED WITH STOPPER	PLEA	ASE C	ONTA	CT TS	SUBAI	<i< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></i<>																			
INFINITE	VARIABLE FEED	0	0	0	0	0	0	0		0										0						
SINGLE	CYCLE FEED																									
Backstop	ping																									
LOW SPI	EED OVERRUN	0	0	0	0	0	0	0						0	0	0			0			0				
MEDIUM	SPEED OVERRUN	0	0	0	0	0													0			0				
HIGH SP	EED OVERRUN	0	0		0												0	0				0				
For Printi	ng Machines																									
INK ROL	L DRIVE										0															
INK ROL	L DRIVE (Manual drive)											0														
LABEL P	RINTING MACHINE												0													
CUSTON	1 DESIGN	CUS	TOM I	DESIG	SNS A	VAILA	BLE	ON RE	QUES	ST																


USE IN VARIOUS APPLICATIONS

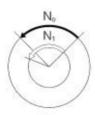
To select the optimum Cam Clutch, it is imperative that you thoroughly understand the application and conditions of use. The following explains the use of Cam Clutches by application: First confirm how the clutch you are going to use is classified, and then obtain detailed data from the relevant pages.

A. OVERRUNNING

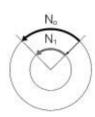
Cam behavior and Cam Clutch operation


In the case of a Cam Clutch similar to the one shown on the right, the different conditions of engagement and disengagement for the various possible states are described below. These states are referred to as "overrunning".

1. Outer race rotates counterclockwise.

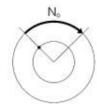

1-1

When the outer race starts rotating counterclockwise from a standstill at N₀ r/min, the Cam Clutch engages and the inner race rotates in the same direction at N₀ r/min.

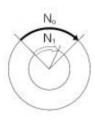

1-2

When the inner race is rotated counterclockwise at N_1 r/min by an outside force in the above state, and if N_1 is faster than N_0 ($N_1 > N_0$), the Cam Clutch overruns and the inner race rotates at N_1 r/min, and the outer race at N_0 r/min.

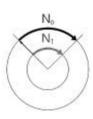
1-3


When N_1 and N_0 become equal, either by deceleration of N_1 or by acceleration of N_0 , the Cam Clutch engages again, and this continues as long as N_0 is faster than N_1 ($N_1 < N_0$), and transmits torque from the outer race to the inner race.

2. Outer race rotates clockwise


2-1

When the outer race starts rotating clockwise from a standstill at N₀ r/min, the Cam Clutch overruns and the inner race remains at a standstill.

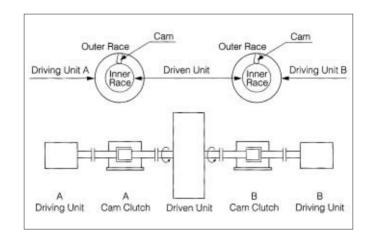

2-2

When the inner race is rotated clockwise at N_1 r/min by an outside force in the above state, and if N_0 is faster than N_1 ($N_1 < N_0$), the Cam Clutch overruns and the inner race rotates at N_1 r/min and the outer race at N_0 r/min.

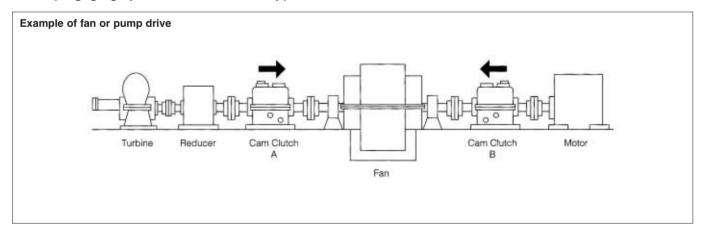
2-3

When N_1 and N_0 become equal, either by acceleration of N_1 or by deceleration of N_0 , the Cam Clutch engages, stays engaged, and transmits torque from the inner race to the outer race as long as N_1 is faster than N_0 .

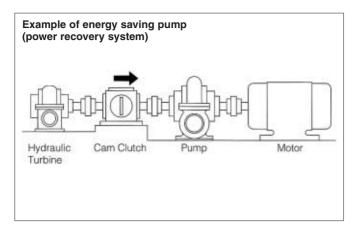
2-4


If the inner race is rotated counterclockwise by another force, the Cam Clutch continues overrunning irrespective of the speed of rotation.

	Application	Specification			
	High-speed overrunning and high- speed engagement	Overrunning speed = 700 r/min and up, engaging speed = 700 r/min and up			
Dual Drive Two Speed Drive	High-speed overrunning and medium and low-speed engagement	Overrunning speed = 700 r/min and up, engaging speed = Up to 700 r/min			
	High-speed overrunning and low- speed engagement	Overrunning speed = 700 r/min and up, engaging speed = Up to 200 r/min			
	Medium and low-speed overrunning and medium and low-speed engagement	Overrunning speed = Up to 700 r/min, engaging speed = Up to 700 r/min			
Normal engag	ement and reverse overrunning	Input force is put into normal rotation for engagement and reverse rotation for overrunning.			
Free wheeling		Overrunning starts when the rotating speed of the driven side becomes faster than the driving side.			
Manual type		Continuous overrunning, manual engagement			


A-1. DUAL DRIVE AND TWO-SPEED DRIVE

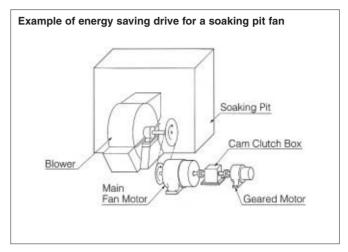
Dual drive is a drive system in which two sets of driving units are installed instead of one driven unit, and the driven unit is driven by one or both of them as required. With dual drive, a drive system which has two sets of driving units having different speeds of rotation is referred to as "two-speed drive", and the driven unit is driven at either high or low speed. Normally, each driving unit uses one Cam Clutch which works as an automatic switcher for the driving units. In the figure on the right, when the driven unit is to be driven by driving unit A in the direction of the arrow, Cam Clutch A engages to transmit the rotating power of the outer race to the inner race i.e., to the driven unit, and drives it at a preset speed of rotation. At this point, since the inner race of Cam Clutch B which is connected to the driven unit also rotates in the direction of the arrow, Cam Clutch B does not engage but overruns, thus disconnecting the driving unit B from the driven unit. Conversely, when the driven unit is to be driven by driving unit B in the direction of the arrow, Cam Clutch B engages to transmit the rotating power of the outer race to the inner race, i.e., to the driven unit, and drives it at a preset speed of rotation. At this time, Cam Clutch A overruns to disconnect driving unit A. Cam Clutch applications are divided into four types (as indicated in the table on the right) depending on the overrunning speed and the engaging speed.


Application	Overrunning speed	Engaging speed	Applicable series	Page	
High-speed overrun- ning and high-speed engagement.	700 r/min and up	700 r/min and up	Cam Clutch Box, MZ, MZEU	70 to 71, 22 to 31	
High-speed overrun- ning and medium and low-speed engagement.	700 r/min and up	Up to 700 r/min	Cam Clutch Box, MZ, MZEU	69 to 70, 22 to 31	
High-speed overrun- ning and low-speed engagement.	700 r/min and up	Up to 200 r/min	Cam Clutch Box, MZ, MZEU, MR, BR, BREU, TB	70 to 71, 22 to 31, 52 to 64, 72	
Medium and low-speed overrunning and medium and low-speed engagement.	Up to 700 r/min	Up to 700 r/min	MZ, MG, 200, MZEU, PB, LD	22 to 31, 37, 65	

A-1-1. High-Speed Overrunning and High-Speed Engagement (Overrunning speed = 700 r/min and up) (Engaging speed = 700 r/min and up)

This example shows a high-speed system in which a driven unit (pump or fan) is driven by a dual drive system consisting of a motor and a turbine. The Cam Clutches are used for automatic switching between the driving units. The fan is normally driven by the Cam Clutch on the turbine side. When starting, or when steam pressure to the turbine drops, the motor takes over from the turbine to drive the fan. Cam Clutch A engages when the turbine drives the fan, and it overruns when the motor drives the fan. Conversely,

Cam Clutch B overruns when the turbine drives the fan, and it engages when the motor drives the fan. The driving devices can be changed over without switching the clutch. This is because the difference in the speed of rotation between the motor and turbine turns the Cam Clutches on and off, and the driving device rotating the fastest is connected automatically to the driven unit. Overrunning and engagement of the Cam Clutches are performed continuously at speeds faster than 700 r/min.

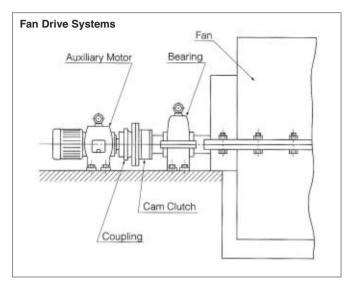


Application of Cam Clutches in an energy saving pump (power recovery system) shows how highly effective energy saving can be achieved with the aid of Cam Clutches. The motor-driven pump discharges high-pressure liquid, which, after circulating, is used to drive a turbine. The turbine is then used to help drive the pump. If the pressure available is too low to rotate the turbine at high speed, the Cam Clutch overruns. However, when the rotating speed of the turbine reaches the rotating speed of the motor, the Cam Clutch engages automatically and the pump is driven by both the turbine, and the motor. Thus, power consumption equivalent to the turbine output can be saved. Since energy loss during overrunning and engagement of the Cam Clutch is extremely small, this system produces results for pumps with an output as low as 7.5 kW. Setup requires only installation of a Cam Clutch and a turbine, and provides a highefficiency energy recovery system with low running costs.

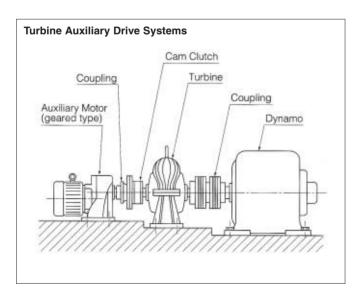
Applicable Series

Series	Advantage	Note	Page
Cam Clutch Box OB-ON OB-SN OB-SF OB-S	Can withstand extended continuous running. Various lubricating and cooling systems can be used. Minimal lubrication maintenance required.	Please specify on the approval drawing that TSUBAKI issues when you place an order.	70 to 71
MZ, MZEU	Grease is sealed in, so lubrication maintenance is not required.	_	22 to 31

A-1-2. High-Seed Overrunning and Medium and Low-Speed Engagement
(Overrunning speed = 700 r/min and up)
(Engaging speed = up to 700 r/min)



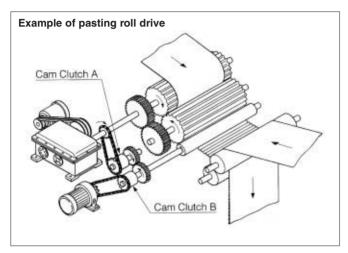
The Cam Clutch works as a switcher for two driving units (high-speed or medium/low-speed). When driving a fan, cement kiln or conveyor in normal operation, the driving speed is switched to high speed. When using them for other purposes, the driving speed is switched to medium or low-speed. The figure above shows a soak pit fan used for melting aluminum and steel ingots, with a Cam Clutch being used for energy saving. The heating is done in two stages, one being quick heating and the other being constant heating. Switching is done automatically by a driving system. For quick heating, the fan is driven by the main motor at high speed (the Cam Clutch is overrunning at this time). For constant heating, since the fan only rotates at low speed, it is driven by a geared motor (the Cam Clutch engages and the main motor and fan rotate simultaneously). Compared to pole change or inverter systems, great equipment cost savings can be made, and the initial equipment costs can be recovered very quickly. If equipment costs must be recovered within one year of continuous running, this system is effective for fans from the 15 kW class and up.


Series	Advantage	Note	Page
Cam Clutch Box OB-ON OB-PN	Can withstand extended continuous running. Minimal lubrication maintenance required.	Please specify on the approval drawing that TSUBAKI issues when you place an order.	70 to 71
MZ, MZEU	Grease is sealed in, so lubrication maintenance is not required.	_	22 to 31
MR	The cam is the outer race overrunning type that lifts off.	_	66

A-1-3. High-Speed Overrunning and Low-Speed Engagement (Overrunning speed = 700 r/min and up)

(Overrunning speed = 700 r/min and up) (Engaging speed = up to 200 r/min)

Smoke ventilation and gas mixing fans operate in high temperature environments. In order to prevent excessive thermal transfer from distorting the fan shaft, an auxiliary drive system is used to keep the fans rotating slowly when the main motor shuts down. Using a Cam Clutch at the auxiliary motor eliminates the need for manual clutch operation. Thermal expansion in the fan shaft must be absorbed through an expandable coupling. During main motor operation, the Cam Clutch rotates as a normal bearing, so service life is greatly extended.



This example shows a Cam Clutch installed in the auxiliary drive system of a steam turbine. The auxiliary drive system powers the turbine at low speed through the engaged Cam Clutch, until steam pressure accelerates the turbine to the Cam Clutch release speed. Then the cam automatically disengages and runs as a high speed ball bearing, because there is no mechanical contact in the clutch.

Series	Advantage	Note	Page
Cam Clutch Box OB-ON OB-PN TB	Can withstand extended continuous running. Easy installation and space saving are possible with the TB and TEW types that are combined with speed reducers. Minimal lubrication maintenance required.	Please specify on the approval drawing that TSUBAKI issues when you place an order.	70 to 71
BR, BREU	The cam is the inner race overrunning type that lifts off.	_	52 to 64
MZ, MZEU	Grease is sealed in, so lubrication maintenance is not required.	_	22 to 31
MR	The cam is the outer race overrunning type that lifts off.	_	66

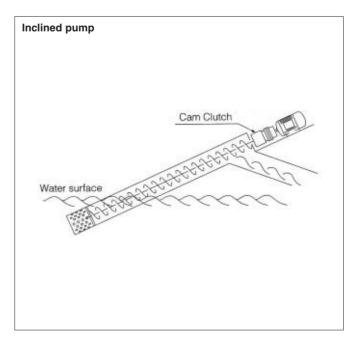
A-1-3. Medium and Low-Speed Overrunning and Medium and Low-Speed Engagement (Overrunning speed = Up to 700 r/min) (Engaging speed = Up to 700 r/min)

In this application, one driven unit is driven at twospeeds by two medium and low-speed drive units, both at speeds lower than 700 r/min. Two Cam Clutches enable automatic switching between the drive units.

The above figure shows an example of Cam Clutches being used with the pasting rolls of a corrugating machine for making cardboard. The pasting rolls are driven continuously by the main motor. During this time, Cam Clutch A engages and Cam Clutch B overruns. When the main motor must be stopped temporarily to fix a problem, it is necessary to keep rotating the pasting rolls in order to prevent paste on the roll surface from drying. To do this, the rolls are driven by an auxiliary motor at a low speed sufficient to prevent the paste from drying (Cam Clutch A overruns, while B engages). This system is also used with meat choppers and screw feeds in food processing machinery.

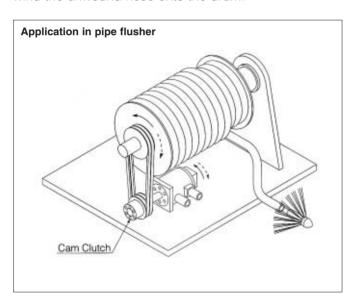
Applicable Series

Series	Advantage	Page
MZ, MZEU	Grease is sealed in, so lubrication maintenance is not required.	22 to 31
MG	Compact and transmits high torque. Excellent wear resistance when overrunning.	65
ВВ	Same dimensions as the #62 type bearing. Integrated Cam Clutch and bearing.	33, 34
РВ	Sleeve-type outer race enables mounting of sprocket or gear with small outer diameter. Use of oil-impregnanted alloy bearings makes oiling to the bearing section unnecessary.	37
200	 Since this series is mounted directly on the shaft, it is possible to use a shaft of large diameter. Compact designs are possible. 	32
LD	Grease is sealed in, so lubrication maintenance is not required. For light loads and low-speed drive.	38

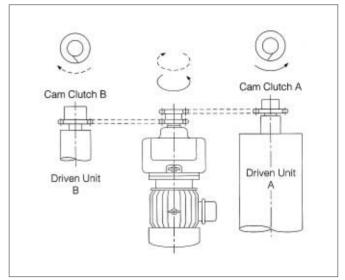

A-2. NORMAL ENGAGEMENT REVERSE OVERRUNNING

In this application, the normal rotating input power is held for a certain time and, after driving the driven side through the engagement of the Cam Clutch, the Cam Clutch is put into the overrunning state by reversing the input power. This application is classified into the following three kinds, depending upon the purpose for overrunning the Cam Clutch:

- 1. To simply break the linkage between the input side and the driven unit (for details, see A-2-1 below).
- 2. To make the driven unit rotate in reverse by drive from another source after making the input side rotate in reverse, and brake the load by engagement of the clutch when the speed of rotation of the driven unit has reached that of the input side (for details, see A-2-2 below).
- 3. To selectively drive either one of the driven units A or B connected respectively to the outer races of the different aligned Cam Clutches A and B, which are connected to the same drive shaft. When Cam Clutch A engages due to normal rotation of the shaft, Cam Clutch B overruns, and when Cam Clutch B engages due to reverse rotation of the shaft, Cam Clutch A overruns (for details, see A-2-3 below).

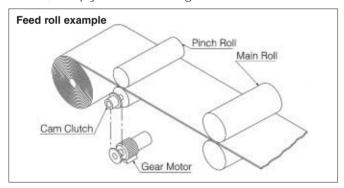

A-2-1. Application requires breaking connection only (see the figure below)

This example shows the use of a Cam Clutch with an inclined pump. If the motor is wired in reverse by mistake at installation, it will rotate the pump in reverse. By mounting a Cam Clutch between the motor and the pump, reverse rotation of the pump (which must not be allowed) is prevented because the Cam Clutch will overrun if the motor rotates in reverse. The Cam Clutch stays engaged at all times when the rotation is normal.


A-2-2. Application for the purpose of braking the driven side (see the figure below)

The example here shows an application in which the hose drum of a pipe flusher is being driven. When the hydraulic motor is rotated in reverse in the counterclockwise direction, the Cam Clutch inner race rotates in reverse, and the Cam Clutch overruns. The flushing pump is driven in this state. The flushing water passes through the hose and gushes out of the nozzle toward the back. The force of this water jet starts the nozzle running and pulls and unwinds the hose. At the same time, the hose drum starts reverse rotation in the same counterclockwise direction, and increases its speed of rotation until it reaches the overrunning speed of the inner race. At this point, the Cam Clutch engages, and the hydraulic motor works as a brake to stop the acceleration of the drum. Therefore, the running speed of the water jet nozzle is kept constant thereafter. When the hydraulic motor is rotated normally in the clockwise direction, the Cam Clutch engages to wind the unwound hose onto the drum.

A-2-3. Application for the purpose of selectively driving either one of two driven units by normal or reverse rotation of the drive input (see the figure below)


When the motor is rotating normally (in the counterclockwise direction), Cam Clutch A engages to drive unit A, and Cam Clutch B overruns. Conversely, when the motor is rotated in reverse (in the clockwise direction), Cam Clutch B engages to drive driven unit B. In this application, the two driven units must work independently.

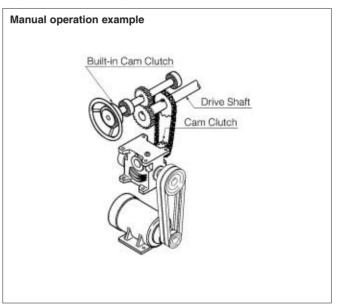
Series	Advantage	Caution	Page
MZ, MZEU	Grease is sealed in, so lubrication maintenance is not required.		22 to 31
ВВ	Same dimensions as the #62 type bearing. Integrated Cam Clutch and bearing.	When the engaged time is long	33, 34
РВ	Sleeve-type outer race enables mounting of sprocket or gear with small outer diameter. Use of oil-impregnated alloy bearings makes oiling the bearing section unnecessary.	nd load change is considerable, noose the SS (reinforced spring) pecification. In this specification,	37
200	 Since this series is mounted directly to the shaft, it is possible to use a large diameter shaft. Compact designs are possible. 	the response of cam following load changes during Cam Clutch	32
LD	Grease is sealed in, so lubrication maintenance is not required. For light loads and low-speed drive.	engagement is enhanced. Use the Cam Clutch at an overrunning speed of 50 r/min or lower.	38
MG	Compact and transmits high torque. Excellent wear resistance when overrunning.		65
MI	MG type reinforced spring type. Excellent response to load change.		65

A-3. FREE WHEELING

To prevent differences in the rotating speed between the driving side and the driven side from damaging the driving unit or the product, the Cam Clutch overruns when speed differences occur. Normally, the Cam Clutch engages to transmit torque, and it overruns to break the connection between the driving side and the driven side. In this case the Cam Clutch overruns at a speed equal to the difference in rotating speed that occurs when the driven unit (normally the inner race) rotates faster than the driving unit (normally the outer race), or when the driving unit is decelerated or stopped abruptly. When feeding hoop-shaped material or plate material to the next process by slitter or pressure rolls, the material is fed at first by pinch rolls up to the main rolls. Since the main rolls process the material while pulling it at a speed faster than that of the pinch rolls, the pinch rolls are pulled by the material. At this point, the Cam Clutch starts to overrun and prevents the pinch rolls from being driven in reverse by the material. The Cam Clutch is used to prevent damage to the pinch roll driving parts and to the material, due to slippage between the pinch rolls. This method is also used with drying machines, engine testers, and plywood fabricating machines.

Applicable Series

Series	Advantage	Page
MZ, MZEU	Grease is sealed in, so lubrication maintanance is not required.	22 to 31
MG	Compact and transmits high torque. Excellent wear resistance when overrunning.	65
ВВ	Same dimensions as #62 type bearing. Integrated Cam Clutch and bearing.	33, 34
PB	Sleeve-type outer race enables mounting of sprocket or gear with small outer diameter. Use of oil-impregnated alloy bearings makes oiling the bearing section unnecessary.	37
200	 Since this series is mounted directly on the shaft, it is possible to use a shaft of large diameter. Compact designs are possible. 	32
LD	Grease is sealed in, so lubrication maintenance is not required. For light loads and low-speed drive.	38
MI	MG reinforced spring type. Excellent response to load change.	65


SS Specification (reinforced spring specification)

In this specification, the response of cam following load changes during Cam Clutch engagement is enhanced. Use the Cam Clutch at an overrunning speed of 50 r/min or lower.

A-4. MANUAL TYPE

Cam Clutches are used when a machine is operated manually for positioning, adjustment or inching. The Cam Clutch mounted at the manual handle overruns while the machine is in operation. The handle does not rotate and cause a safety hazard.

Cam Clutches are used in the manual handles of circular knitting machines. The manual handle is used to operate the machine manually when starting, for adjustment of the needle and thread. When the machine starts its regular knitting work after the adjustment, the linkage between the Cam Clutch and the handle is broken. Another Cam Clutch is provided at the output section of the worm reduction gears, to break the connection with driving side during manual operation. Since this Cam Clutch engages to drive the circular knitting machine during regular operation, the large torque capacity PB12 is used.

Applicable Series

Series	Advantage	
LD	For low-speed overrunning.No maintenance.	
MZ, MZEU	For medium-speed overrunning. No maintenance.	22 to 31
200	For medium-speed overrunning. Since this series is mounted directly on the shaft, it is possible to use a shaft of large diameter.	32
ВВ	Same dimensions as #62 type bearing.Integrated Cam Clutch and bearing.	33, 34
PB	For medium-speed overrunning. Since it has a sleeve type outer race, it can be mounted easily on a handle with a small boss diameter.	37
PG	For low-speed overrunning. Outer race is tapped for mounting a lever.	42

For normal and reverse driving in the above examples, specially designed Cam Clutches are available. Please contact TSUBAKI for details.

B. INDEXING (INTERMITTENT FEED)

Cam Behavior and Cam Clutch Operation

In this application, reciprocal movement of a certain angle (θ) is provided at the outer race of the Cam Clutch to perform engagement and overrunning in turn continuously and obtain intermittent rotation. In the case of the Cam Clutch shown in the figure, when the outer

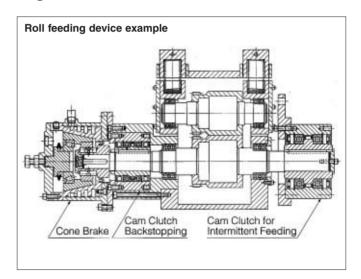
race moves from A to B, the Cam Clutch engages to rotate the inner race (of the driven side) by angle θ , i.e., from a to b. However, the Cam Clutch does not operate to stop the inner race at position b. When the outer race rotates in reverse from B to A, the Cam Clutch overruns while the inner race

(of the driven side) does not rotate. By repeating this sequential movement, the inner race (of the driven side) rotates intermittently within the preset angle (θ) .

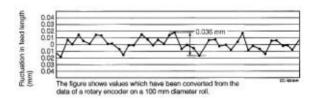
Advantages of indexing mechanisms that use Cam Clutches

- 1. Accurate feeding without backlash.
- 2. Feeding distance can be simply adjusted and is stepless.
- 3. The indexing mechanism has low running costs.

Classification into six applications


		Application	Specification	Page
Indexing	(1)	High speed and small feed angle	Frequency (number of rotations) = 300/min. and above Feed angle (θ) : Up to 90°	15
	(2)	Medium and low speed and small feed angle	Frequency (number of rotations) = 300/min. or less Feed angle (θ) : Up to 90°	16
	(3)	Low-speed and large feed angle	Frequency (number of rotations) = 150/min. or less Feed angle (0) : Up to 90°	16
	(4)	Backstopping in intermittent feeding	Frequency and feed angle are the same as those of Cam Clutches for feeding.	17
	(5)	Feeding with stopper	Application method is the same as (2) except that material is stopped by force during feeding.	17
	(6)	Speed change	Application method is the same as (2) except that the rotating speed is changed by steplessly changing the feed angle (θ) during operation.	18

B-1. HIGH SPEED AND SMALL FEED ANGLE


(Feed frequency: N = 300 to 1,200 times/min.) (Feed angle: θ = Up to 90°; N × θ = 20,000 max.)

The example in the figure shows a roll feeding device which is frequently used in high-speed automatic clamp presses. Driving power is taken out of the eccentric disk provided at the end of the continuously rotating crankshaft, and this power drives the feed rolls intermittently through a Cam Clutch. The feed length can be changed quickly and easily for improved work efficiency. In order to attain high-speed, high-precision feeding, a cone brake with less torque fluctuation and a Cam Clutch for backstopping are used together.

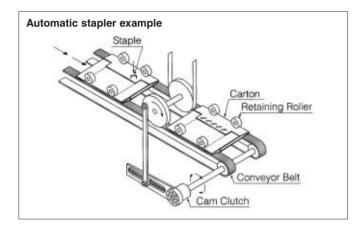
The Cam Clutches in this application are designed for use in the range of $(N \times \theta) \le 20,000$. Please consult TSUBAKI regarding clutches for use outside of this range.

Feed accuracy

[Specifications]

Clutch model : MX35

Feed frequency: 900 times/min.

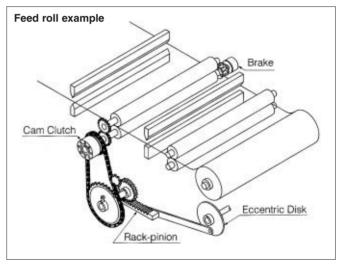

Feed length : 26.6 mm Load Inertia : 0.01 kg·m² Braking torque : 39.2 N·m

Series	Advantage	Page
MX	Suitable for high-speed indexing with a small feed length. High feeding accuracy is possible.	40

B-2. MEDIUM AND LOW SPEED AND SMALL FEED ANGLE

(Feed frequency : N = Up to 300 times/min.) (Feed angle : θ = Up to 90°; N × θ = 20,000 max.)

Indexing in this application range is applicable to many machines. The figure shows an example of use in the paper feeding section of an automatic stapler. The reciprocating movement of the eccentric disk is converted by the Cam Clutch into an intermittent feed motion, which drives the belt conveyor. Hence, stapling is timed to the intermittent feeding motion and load overrun is prevented by a brake. Stapling is done at an exact pitch. This indexing can be applied extensively to food and other packaging machines.


Applicable Series

Series	Advantage	Page
MI	For medium speeds (up to 300 times/min.). Since a free-action type cam retainer is used, the cam has excellent follow-up response at the time of engagement.	65
MZ, MZEU	For low speed (up to 150 times/min.).No maintenance.	22 to 31
200	 For low speed (up to 150 times/min.). Since this series is mounted directly on the shaft, it is possible to use a shaft of large diameter. 	32
BB	For low speeds (up to 100 times/min.). Same dimensions as #62 bearing.	33, 34
РВ	For low speeds (up to 150 times/min.). Sleeve-type outer race enables mounting of sprocket or gears as well as torque arms with small boss diameter.	37
LD	For low speeds (up to 100 times/min.). For light loads, no maintenance.	38
MI-S	For medium speeds (up to 300 times/min.). Use of a cam finished by special surface hardening improves abrasion resistance.	41
РО	For low speeds (up to 150 times/min.).A swing arm is mounted for easy handling.	42
PS	For low speeds (up to 150 times/min.). Suitable especially when higher precision is required.	42
MX	For high speeds (up to 1,200 times/min.). Applicable also to low speeds.	40
PG	For low speeds (up to 100 times/min.). Since a swing arm is mounted, it can be used simply by mounting it on the shaft.	42

B-3. LOW SPEED AND LARGE FEED ANGLE

(Feed frequency : N = Up to 150 times/min.) (Feed angle : θ = 90° and up; N × θ = 50,000 max.)

Segmented gears and rack & pinions are often used to produce the reciprocal movement to be transmitted to the Cam Clutch. The figure below gives an application example of a pouch making machine. Since the reciprocal movement of the eccentric disk is accelerated through the rack & pinion assembly, the reciprocal action of the Cam Clutch outer race is enlarged to 860°. In this machine, the 60 mm vinyl sheet feeding length is indexed at a speed of 40 to 60 times per minute. In this case, the acceleration of the Cam Clutch increases, a large torque acts repeatedly, and the cam slipping distance at overrunning becomes longer. Hence, a cam is required that has superior engagement and higher anti-abrasive properties. A brake is used in order to improve the precision of the vinyl sheet feeding pitch.

Series Advantage		Page
MI-S	The MI-S Series has been developed exclusively for these applications. Special cam surface hardening treatment improves the abrasion resistance. The shape and structure of the cam are specially designed so that it can handle abrupt speed changes (e.g. great acceleration) when engaging.	41

B-4. BACKSTOPPING IN INTERMITTENT FEEDING

Cam clutch and feed accuracy

When designing a high-accuracy feeding device that incorporates Cam Clutch indexing, both the driving and driven units must be made light in weight and high in rigidity. Moreover, when selecting the ideal Cam Clutch, it is extremely important to select a brake to stop the driven unit at a preset position, a positioning device, and a Cam Clutch for backstopping (which cannot be expected of the Cam Clutch for indexing).

Feed accuracy = Cam Clutch for indexing + Cam Clutch for backstop + Brake

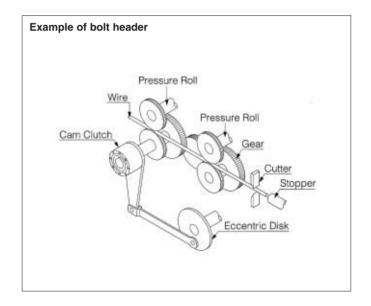
Cam Clutch for backstopping

This Cam Clutch overruns when the Cam Clutch for indexing has completed one feeding stroke. If the frictional resistance of the driven unit is smaller than the overrunning frictional torque of the Cam Clutch, or if a reverse torque occurs on the driving side due to back tension of the material, the

driven unit may rotate in reverse without stopping at the end point fed by the Cam Clutch. The most effective way to prevent this is to mount a Cam Clutch for backstopping, although a brake or positioning pin may also be used for this purpose. Since the Cam Clutch for backstopping repeats the overrunning and engagement at the same frequency as that of the Cam Clutch for indexing, use one that is equivalent to the feeding clutch or one that is one size smaller.

Brakes and other stopping devices

The outer race of a Cam Clutch for indexing starts reverse rotation immediately upon the completion of one feeding stroke. At the same time, the Cam Clutch starts overrunning. At this moment, the driven unit is free from all restrictions, and therefore, when the driven unit has a larger inertia or the feed



speed is faster, the inner race tends to rotate beyond the stroke of the outer race. To prevent this, a friction brake is often used as a braking device, although a positioning pin or stopper may also be used for this purpose. A braking device significantly improves the feed accuracy. Accordingly, use a frictional brake which has as small a fluctuation as possible in its braking force. The wet-type cone brake is most effective. Please consult TSUBAKI regarding brake selection.

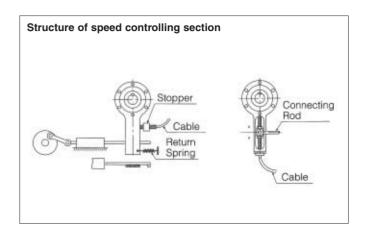
B-5 FEEDING WITH STOPPER

(Feed frequency = Up to 300 times/min.) (Feed angle = up to 90°)

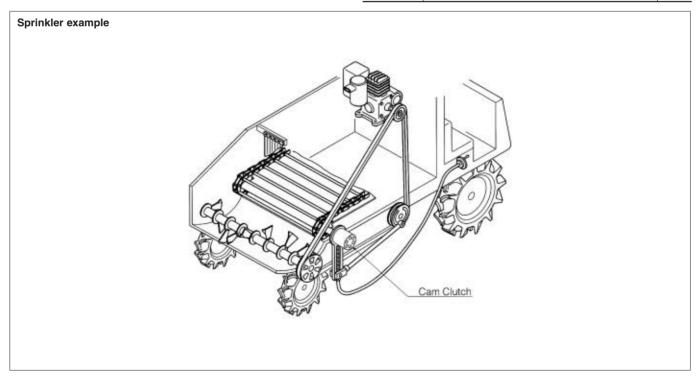
In this application, a stopper forcibly stops the material to be indexed at a position just before the feed end point, to obtain a fixed feeding pitch. As soon as the material hits the stopper, a shock torque larger than the torque required for feeding is applied to the feeding roll which is still rotating. The figure below shows an example of a Cam Clutch used in a bolt header. The wire is fed intermittently by a Cam Clutch mounted on a grooved feed roll. Since the feed length of the wire is set longer than necessary, the fed wire hits the stopper which has been set at a position where the wire can be fed at the necessary length. The reactive force this generates acts as vibrating shock load upon the Cam Clutch. It is therefore necessary to consider this when selecting a Cam Clutch.

Applicable series

Consult TSUBAKI.


Cautions

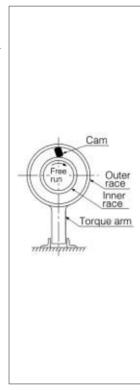
When setting the feed length, consider the following: Feed length setting = Necessary length + α The closer to zero α is, the smaller the vibrating shock load on the Cam Clutch becomes and consequently, the longer the service life becomes.


B-6. SPEED CHANGE

(Feed frequency : N = Up to 300 times/min.) (Feed angle : θ = Up to 90°; N \times θ = 20,000 max.)

In an intermittent feed mechanism that uses one or more Cam Clutches, the speed of the driven side is changed steplessly by changing the feed angle. The figure below shows an example of a sprinkler (manure spreader). The amount of manure to be sprinkled, which varies depending on the field conditions, must be adjusted case by case. The chain conveyor is driven by an intermittent Cam Clutch feeding action and the manure loaded on the cart is fed in bits to the sprinkling vanes, which rotate continuously. The manure to be sprinkled can thus be kept at the optimum amount by adjusting the amount of manure to be fed. The feed amount (or angle of the Cam Clutch) can be controlled steplessly while the sprinkler is operating.

Series	Advantage	Page
MI-S	For medium speeds (Up to 300 times/min.)	41
MI	For medium speeds (Up to 300 times/min.)	65
MZ, MZEU	For low speeds (Up to 150 times/min.)	22 to 31
200 PB	For low speeds (Up to 150 times/min.)	32 37
LD	For low speeds (Up to 100 times/min.) and light loads	38

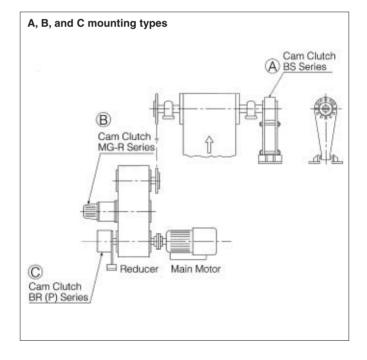


C. BACKSTOPPING TO PREVENT REVERSE ROTATION

Backstopping is used to prevent the rotating shaft from rotating in the reverse direction. The Cam Clutch continues overrunning while the shaft rotates normally, and it engages to prevent reverse shaft rotation just before it is about to occur.

Behavior and function of Cam Clutch

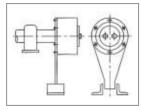
Normally, the inner race is mounted on the rotation shaft, and the outer race is fixed to the machine frame. The inner race is thus set on the overrunning side. As soon as the shaft begins to rotate in reverse, the cams engage with the inner and outer races to prevent reverse rotation and support the load.


Three classifications

Backstopping is classified into three types depending on the overrunning speed and load conditions.

Backstopping	Purpose of use		Overrunning speed	Engage- ment	Major applications	Page
	1	Backstop- ping for low- speed over- running	ng for low- leed over- leed over- lending or less	y	For backstopping of conveyor shafts, pumps, etc.	20
	2	Backstop- ping for medium- speed over- running	Continuous overrunning at 150 to 700 r/min	Irregular, low-frequency engagement	For backstopping of intermediate shafts of conveyor-drive reduction gears.	20
	3	Backstop- ping for high-speed overrunning	Continuous overrunning at 700 to 3,600 r/min		For backstopping of high-speed rotating shafts in conveyor-drive machines, pumps, etc.	20

Prevention of reverse rotation of inclined and vertical conveyors is a typical example of how backstopping is used. The following A, B, and C types are available for different Cam Clutch mounting positions, and the series listed are designed to handle each specification.


Type of mounting	Mounting position	Use	Specification (overrunning speed/ reversing torque)	Applicable series	Page
А	Pulley shaft	Backstopping for low-speed overrunning	0 to approx. 150 r/min.; Large reversing torque.	BS BS-R BSEU	43 to 51
В	Inter- mediate shaft of reduction gears	Backstopping for medium- speed over- running	Approx. 150 to 700 r/min.; Medium reversing torque.	MG-R	67
С	Directly connected to motor shaft	Backstopping for high-speed overrunning	300 to 3,600 r/min.; Small reversing torque.	BR BREU	52 to 62

C-1. BACKSTOPPING FOR LOW-SPEED OVERRUNNING

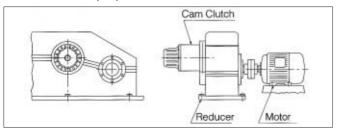
(Overrunning speed at 150 r/min or less)

In this application, the inner race of the Cam Clutch is mounted directly onto the conveyor head pulley, or other shaft with a low-speed of rotation, while the outer race is anchored to the conveyor frame to prevent reverse rotation.

Since reverse rotation is prevented directly by the conveyor shaft without using a drive chain, gears, or couplings, this is regarded as the safest and most reliable mounting method. Additionally, a low overrunning speed minimizes the cam overrunning slip speed, as well as the overall slipping distance. As a result, wear on the cam is reduced and a prolonged service life can be expected. In addition to conveyors, this system is also used to prevent reverse rotation in inclined and screw pumps.

Applicable Series

Series	Advantage	Page
BS BS-R BSEU	 Cam Clutch designed for conveyor backstopping. Designed to be perfectly dust-proof. Lubrication is greatly enhanced by the cam-roller combination. Grease is sealed in, so lubrication maintenance is almost never required. 	43 to 51


Series	Maintenance
BS 65 to BS 135 BSEU 25 to BSEU 90	Grease is sealed in, so lubrication maintenance is not required.
BS 160 to BS 450	Grease lubrication with replacement once or twice a year.
BS65R to BS450R	Oil lubrication with replacement once a year.

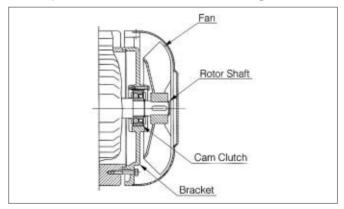
Depending on conditions, the following series can also be used for this purpose: MG (p. 65), MG-R (p.67), MZ, MZEU (p. 22 to p. 31), BB (p. 33), PB (p. 37), 200 (p. 32) and LD (p. 38) Series

C-2. BACKSTOPPING FOR MEDIUM-SPEED OVERRUNNING

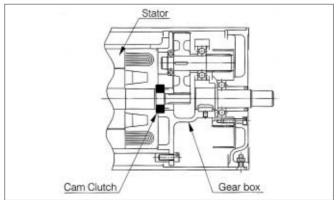
(Overrunning speed = 150 to 700 r/min)

In this application, the Cam Clutch is mounted on shafts rotating at medium speeds, such as the intermediate shafts of reduction gears, etc., to prevent reverse rotation. Since reverse rotation is prevented by the medium-speed shaft, the Cam Clutch required only needs to withstand a comparatively small torque which is inversely proportional to the rotating speed ratio of the conveyor shaft. Accordingly, even a small-sized Cam Clutch can be used for this purpose.

Applicable Series

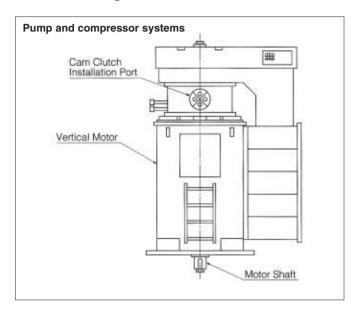

Series	Series Advantage	
MG-R	The oil reservoir provided with this series accommodates a large amount of oil to reduce maintenance. Compact and able to transmit large torques. Excellent wear resistance when overrunning.	67
200	Since this series is mounted directly on the shaft, it is possible to use shafts of large diameters. Ideal for use with reduction gears.	32

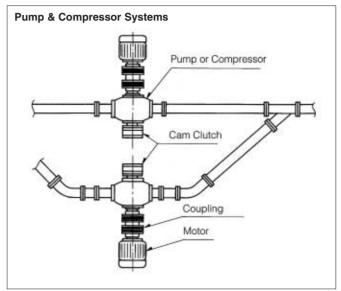
The following series, which have sealed-in grease and are maintenance free, can also be used for this purpose: MZ, MZEU (p. 22 to p.31), MG (p. 65) and PB (p. 37) Series


C-3. BACKSTOPPING FOR HIGH-SPEED OVERRUNNING

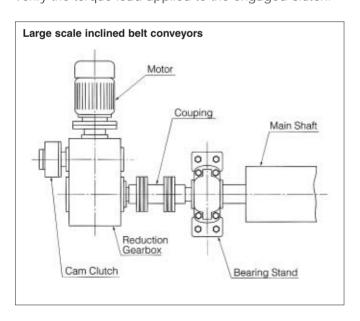
(Overrunning speed = 700 to 3,600 r/min)

This example shows a Cam Clutch installed to the motor shaft of an inclined conveyor system, to prevent reverse rotation. Low torque Cam Clutches can also be installed to high speed shafts. Cam Clutches are excellent for space-limited applications because they can be used as is for replacements for standard ball bearing cassettes.


This example shows a Cam Clutch installed to a motor pulley to prevent reverse rotation. Cam Clutches can be installed to inclined belt conveyor systems to prevent reversing when the conveyor stops, as a result of power loss or other causes.



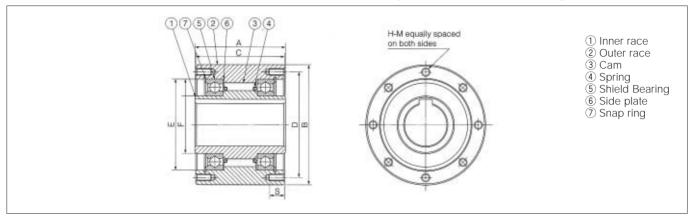
Series	Advantage	Page
	 Same dimensions as #62 bearing unit. One-piece construction of bearing and Cam Clutch. 	33, 34


There are many cases in which large scale vertical motor or pump systems must be kept from turning backwards A Cam Clutch can be installed above the motor of a vertical motor system, or on the mainshaft of a vertical pump, to provide this function. Anchoring the outer race of the Cam Clutch will prevent the inner race from rotating in the reverse direction.

Many liquid media transmission systems use multiple pumps or compressors feeding into the same line, to save energy or provide emergency backup functions. System pressure will often cause the pump or compressor to back-spin when not running. A Cam Clutch can prevent this.

For reasons of safety, belt conveyors must be prevented from moving backwards. Installing a Cam Clutch on the main motor shaft is the easiest and most economical method for this. For certain large and midscale belt conveyors with high lift distances, it may be more economical to install the Cam Clutch on one of the high speed shafts. In these cases it is important to verify the torque load applied to the engaged clutch.

Series	Advantage	Page
BR, BREU	The cam is the inner race overrunning type that lifts off	52 to 64


MZ SERIES CAM CLUTCH

■ MODELS MZ 15 TO MZ 70

For General Applications

Features:

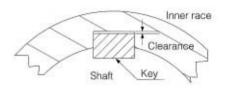
- 1. Prelubricated with special grease
- 2. No maintenance required.
- 3. Easy installation and handling

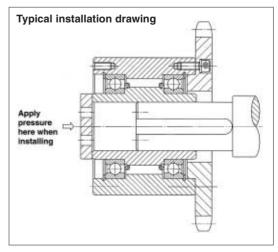
Dimensions and Capacities

Dimensions in mm

Model	Max. Torque	Nominal Overrun-	Overru (r/n	ax. unning nin)	Max. indexing	Stock B	ore Size	А	В	С	D	Е	F	G	H-M No. of	S	Weight
	(N·m)	ning Drag (N·m)	Inner Race	Outer Race	(cycle/min.)	Dia (H7)	Key- way	, ,				(M6))	Tapped Holes × Size × Pitch		(kg)
MZ15	186	0.20	1,800	900	150	15	5 × 2.3	62	68	60	58	47	25	5.5	$6 \times M5 \times P0.8$	10	1.4
MZ17	215	0.20	1,700	800	150	17	5 × 2.3	66	75	64	64	52	28	6.3	6 × M5 × P0.8	10	1.8
MZ20	323	0.29	1,600	700	150	20	6 × 2.8	67	80	65	68	55	30	7.6	6 × M6 × P1.0	12	2.0
MZ30-22						22	6 × 2.8										
MZ30-25	735	0.39	1,500	500	150	25	8 × 3.3	82	100	80	88	75	45	8.9	6 × M8 × P1.25	16	3.7
MZ30						30	10 × 3.3										
MZ35	1,080	0.49	1,400	300	150	35	10 × 3.3	87	110	85	95	80	50	8.7	6 × M8 × P1.25	16	4.8
MZ45-40	1 (20	0.70	1 400	200	150	40	12 × 3.3	92	100	90	110	95	60	0.4	0 M0 D1 2F	1/	/ 2
MZ45	1,620	0.69	1,400	300	150	45	14 × 3.8	92	125	90	110	95	60	8.4	8 × M8 × P1.25	16	6.2
MZ60-50						50	14 × 3.8										
MZ60-55	2,110	0.98	1,200	250	150	55	16 × 4.3	102	155	100	140	125	80	9.1	8 × M8 × P1.25	16	10.2
MZ60						60	18 × 4.4										
MZ70-65	2.040	1.07	1 100	250	150	65	18 × 4.4	105	175	100	1/2	1.45	ΟΓ	0.7	0 M0 D1 2F	1/	12.2
MZ70	3,040	1.27	1,100	250	150	70	20 × 4.9	105	175	103	162	145	95	8.6	8 × M8 × P1.25	16	13.2

Installation and Usage


- MZ Series Cam Clutch is Shielded by shield bearings on both ends, packed with a special grease, and are ready for use. No additional lubricant is required.
- 2. For attaching pulleys, gears or sprockets to the clutches, insert hubs (with f₇ tolerance of ISO R773) along the inner surface of the outer race and screw the bolts (high tension) into the tapped holes on the clutch end.


Model	Nominal diameter (mm)	tolerance (mm)
MZ15	15	+0 to -0.018
MZ17	17	+0 to -0.018
MZ20	20	+0 to -0.021
MZ30	30	+0 to -0.021
MZ35	35	+0 to -0.025
MZ45	45	+0 to -0.025
MZ60	60	+0 to -0.030
MZ70	70	+0 to -0.030

- Recommended shaft tolerances are shown in the table on the lower left.
- 4. External thrust load should be supported by other devices, not by the Cam Clutch.
- 5. Use only a parallel key to secure

the clutch to the shaft. Do not use a tapered Key.

- When mounting the clutch onto the shaft, apply pressure to the inner race but never to the outer race. See the illustration on the right.
- 7. For vertical mounting, please consult TSUBAKI.
- 8. Ambient temperature range is -5° to 40°C.
- Key to be used should be in accordance with ISO R773. (DIN 6885.1)

MZ-G SERIES CAM CLUTCH

■ MODELS MZ 15G TO MZ 70G

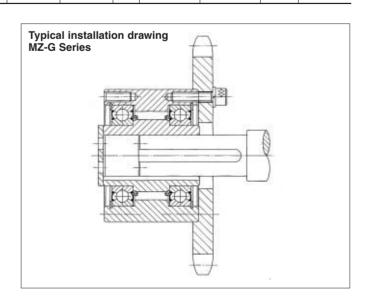
For General Applications

1 Inner race (§ Bearing (ZZ type) (§ Side plate (§ Spring (4) Spring (§ Snap ring (4) Spring (§ Snap ring (4) Spring (§ Snap ring (§ Sn

Features:

- 1. Outer race surface ground finish
- 2. Outer race surface centering groove finish (refer to the user's manual)

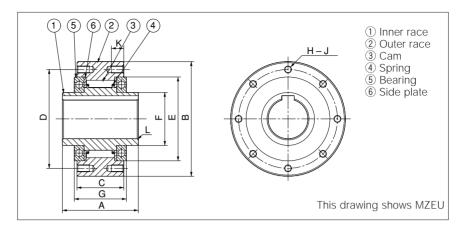
Capacities


	Largest Allowable	High	nest Ing Speed	Highest Indexing	Overrunning Friction
Model	Torque		· ·	Frequency	Torque
	(N·m)	Inner Race	Outer Race	(times/min)	(N·m)
MZ15G	186	1,800	900	150	0.20
MZ17G	215	1,700	800	150	0.20
MZ20G	323	1,600	700	150	0.29
MZ30G-22					
MZ30G-25	735	1,500	500	150	0.39
MZ30G					
MZ35G	1,080	1,400	300	150	0.49
MZ45G-40	1 4 20	1 400	200	150	0.69
MZ45G	1,620	1,400	300	150	0.09
MZ60G-50					
MZ60G-55	2,110	1,200	250	150	0.98
MZ60G					
MZ70G-65	2 040	1 100	250	150	1.27
MZ70G	3,040	1,100	230	150	1.27

DimensionsDimensions in mm

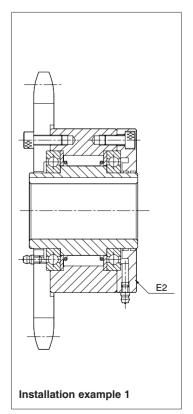
													Dillion	310113 111 111111
		Shaft H	nle	Inner	Outer	Outer	Inner Race	Centering			Mounting	Тар		Moment
Model	Dia.	Key	Chamfer	Race Width	Race Width	Dia.	Boss Dia.	Groove Dia.	Chamfer	PCD	Effective Screw Length	Size (H-m)	Weight	of Inertia
	(H7)	Slot	J	A	С	B (h7)	F	E	K	D	S	QtyDia.xPitch	kg	kg·m²
MZ15G	15	5 × 2.3	0.8	55	53	68	25	47	1.3	58	10	6-M5 × 0.8	1.3	0.08×10^{-2}
MZ17G	17	5 × 2.3	0.8	63	61	75	28	52	1.3	64	10	6-M5 × 0.8	1.7	0.14×10^{-2}
MZ20G	20	5 × 2.3	0.8	64	62	80	30	55	1.3	68	12	6-M6 × 1.0	1.9	0.18×10^{-2}
MZ30G-22	22	8 × 3.3	1.0											
MZ30G-25	25	8 × 3.3	1.0	70	68	100	45	75	1.3	88	16	6-M8 × 1.25	3.2	0.47×10^{-2}
MZ30G	30	10 × 3.3	1.0]										
MZ35G	35	10 × 3.3	1.0	78	76	110	50	80	1.3	95	16	6-M8 × 1.25	4.4	0.77×10^{-2}
MZ45G-40	40	12×3.3	1.3	87	0.5	105	/0	95	1.0	110	1/	0.1401.05	()	1 40 10-2
MZ45G	45	12 × 3.3	1.3	87	85	125	60	95	1.3	110	16	8-M8 × 1.25	6.2	1.40×10^{-2}
MZ60G-50	50	14 × 3.8	1.5											
MZ60G-55	55	16 × 4.3	1.5	90	88	155	80	125	1.3	140	16	8-M8 × 1.25	9.5	3.38×10^{-2}
MZ60G	60	18 × 4.4	1.5											
MZ70G-65	65	18 × 4.4	1.8	105	102	175	0.5	1.45	1.0	1/2	1/	0 M0 1 DE	10.1	(01 10-2
MZ70G	70	20 × 4.9	1.8	105	103	1/5	95	145	1.3	162	16	8-M8 × 1.25	13.1	6.01×10^{-2}

Installation and Usage


- When mounting sprockets or gears to the outer race, use the outer race outer dimension (dimension B) to make a centering flange in the gear or sprocket. Then attach firmly with bolts of tensile strength 10.9 or greater to the tapped holes in the outer race.
- 2. Please refer to MZ Series for usage and other types of installations.

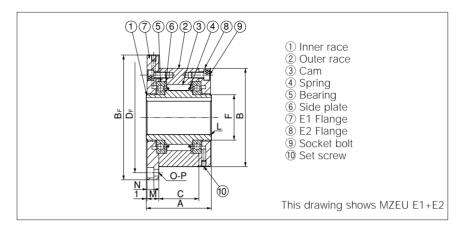
MZEU SERIES CAM CLUTCH

Basic type


Dimensions and Capacities

	Torque	Max. Overru	nning Speed	Drag	D 01						_						
Model	Capacity	Inner Race	Outer Race	Torque	Bore Size	Keyway	Α	В	С	D	Е	F	G	H–J	K	L	Weight
	N∙m	r/min	r/min	N∙m	H7			h7								С	Kg
MZEU 12 (K)	60	2,000	1,000	0.20	12	4 × 1.8	42	62	20	51	42	20	27	3 - φ 5.5	_	0.8	0.5
MZEU 15 (K)	100	1,800	900	0.20	15	5×2.3	52	68	28	56	47	25	32	3 – M5	8	0.8	0.8
MZEU 20 (K)	245	1,600	700	0.29	20	6×2.8	57	75	34	64	55	30	39	4 – M5	8	0.8	1.2
MZEU 25 (K)	425	1,600	600	0.33	25	8×3.3	60	90	35	78	68	40	40	4 – M6	10	0.8	1.8
MZEU 30 (K)	735	1,500	500	0.39	30	8×3.3	68	100	43	87	75	45	48	6 – M6	10	1.0	2.6
MZEU 35 (K)	1,015	1,400	300	0.49	35	10×3.3	74	110	45	96	80	50	51	6 – M6	12	1.0	3.2
MZEU 40 (K)	1,350	1,400	300	0.59	40	12×3.3	86	125	53	108	90	55	59	6 – M8	14	1.3	4.8
MZEU 45 (K)	1,620	1,400	300	0.69	45	14×3.8	86	130	53	112	95	60	59	8 – M8	14	1.3	6.2
MZEU 50 (K)	2,070	1,300	250	0.79	50	14×3.8	94	150	64	132	110	70	72	8 – M8	14	1.3	8.2
MZEU 55 (K)	2,400	1,300	250	0.88	55	16×4.3	104	160	66	138	115	75	72	8 – M10	16	1.5	9.5
MZEU 60 (K)	2,950	1,200	250	0.98	60	18×4.4	114	170	78	150	125	80	89	10 – M10	16	1.5	12.3
MZEU 70 (K)	4,210	1,100	250	1.27	70	20×4.9	134	190	95	165	140	90	108	10 – M10	16	1.8	18.1
MZEU 80 (K)	5,170	800	200	1.38	80	22×5.4	144	210	100	185	160	105	108	10 – M10	16	1.8	23.1
MZEU 90 (K)	12,000	450	150	4.70	90	25×5.4	158	230	115	206	180	120	125	10 – M12	20	2.0	28.1
MZEU100 (K)	17,600	400	130	5.39	100	28×6.4	182	270	120	240	210	140	131	10 – M16	24	2.0	46.3
MZEU130 (K)	24,500	320	110	6.76	130	32×7.4	212	310	152	278	240	160	168	12 – M16	24	2.5	70.2
MZEU150 (K)	33,800	240	80	8.13	150	36×8.4	246	400	180	360	310	200	194	12 – M20	32	2.5	146.3

Installation and Usage

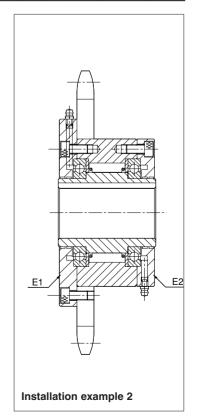

- 1. Model No's. MZEU12 to MZEU80 are pre-greased and require no lubrication. The operational temperature range is -40°C to +40°C.
 - Model No's. MZEU90 to MZEU150 require oil lubrication. (Refer to lubrication and maintenance on page 31).
- 2. Model No's. MZEU12 to MZEU80 sprockets and other torque transmitting factors can be used with the standard flange. Refer to installation example 1.
- 3. We recommend a Shaft tolerance of h7, and ISO R773 (DIN 6885.1) keyway is standard.
- 4. We recommend a tolerance of E H7 for the sprocket and other parts.
- 5. Clean the surface of both ends of the outer race and the contact surfaces of the flange, sprocket and the other parts.
- 6. For Model No's. MZEU90 to MZEU150, apply seal adhesive to the surface of the outer race at both ends.
- 7. Check the direction of rotation.
- 8. When installing standard flanges, sprockets and other equipment to the clutch fit them around the bearings and screw the bolts into both ends of the outer race.
- 9. By installing both the flange and sprocket on the opposite side, the direction of rotation can be changed.
- 10. When mounting the clutch onto the shaft, apply pressure to inner race but never to the outer race.
- 11. For high speed Indexing applications (More than 50 c/m) a strong spring type is recommended.
- 12. Model No. MZEU K

No Mark: No keyway on the outer race.
 K: Keyway on the outer race.

E1 Flange + E2 Flange

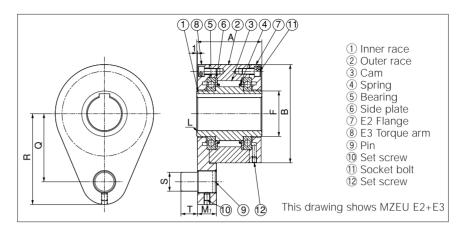
Dimensions and Capacities

	Torque	Max. Overru	nning Speed	Drag	D 01			_				_				0.5	
Model	Capacity	Inner Race	Outer Race	Torque	Bore Size	Keyway	Α	В	BF	С	DF	F	L	M	N	O-P	Weight
	N∙m	r/min	r/min	N∙m	H7			h7					С				Kg
MZEU 12 (K) E1+E2	60	2,000	1,000	0.20	12	4 × 1.8	42	62	85	20	72	20	0.8	10.0	5.7	3 - \$ 5.5	1.1
MZEU 15 (K) E1+E2	100	1,800	900	0.20	15	5×2.3	52	68	92	28	78	25	0.8	11.0	5.7	3 - \$\phi 5.5	1.5
MZEU 20 (K) E1+E2	245	1,600	700	0.29	20	6 × 2.8	57	75	98	34	85	30	0.8	10.5	5.7	4 - φ5.5	1.9
MZEU 25 (K) E1+E2	425	1,600	600	0.33	25	8 × 3.3	60	90	118	35	104	40	0.8	11.5	6.8	4 - φ6.6	2.9
MZEU 30 (K) E1+E2	735	1,500	500	0.39	30	8 × 3.3	68	100	128	43	114	45	1.0	11.5	6.8	6 - \$\phi 6.6	4.0
MZEU 35 (K) E1+E2	1,015	1,400	300	0.49	35	10 × 3.3	74	110	140	45	124	50	1.0	13.5	6.8	6 - <i>ф</i> 6.6	5.2
MZEU 40 (K) E1+E2	1,350	1,400	300	0.59	40	12×3.3	86	125	160	53	142	55	1.3	15.5	9.0	6 - \$\phi 9.0	7.9
MZEU 45 (K) E1+E2	1,620	1,400	300	0.69	45	14 × 3.8	86	130	165	53	146	60	1.3	15.5	9.0	8 - φ 9.0	9.3
MZEU 50 (K) E1+E2	2,070	1,300	250	0.79	50	14 × 3.8	94	150	185	64	166	70	1.3	14.0	9.0	8 - φ 9.0	11.7
MZEU 55 (K) E1+E2	2,400	1,300	250	0.88	55	16 × 4.3	104	160	204	66	182	75	1.5	18.0	11.0	8 – φ 11.0	15.3
MZEU 60 (K) E1+E2	2,950	1,200	250	0.98	60	18 × 4.4	114	170	214	78	192	80	1.5	17.0	11.0	10 – φ 11.0	17.7
MZEU 70 (K) E1+E2	4,210	1,100	250	1.27	70	20 × 4.9	134	190	234	95	212	90	1.8	18.5	11.0	10 – φ 11.0	25.5
MZEU 80 (K) E1+E2	5,170	800	200	1.38	80	22 × 5.4	144	210	254	100	232	105	1.8	21.0	11.0	10 – φ 11.0	33.2
MZEU 90 (K) E1+E2	12,000	450	150	4.70	90	25×5.4	158	230	278	115	254	120	2.0	20.5	13.0	10 - φ 14.0	38.3
MZEU100 (K) E1+E2	17,600	400	130	5.39	100	28 × 6.4	182	270	335	120	305	140	2.0	30.0	17.5	10 – φ 18.0	68.8
MZEU130 (K) E1+E2	24,500	320	110	6.76	130	32 × 7.4	212	310	380	152	345	160	2.5	29.0	17.5	12 – φ 18.0	98.2
MZEU150 (K) E1+E2	33,800	240	80	8.13	150	36 × 8.4	246	400	485	180	445	200	2.5	32.0	21.5	12 – φ 22.0	198.2


Installation and Usage

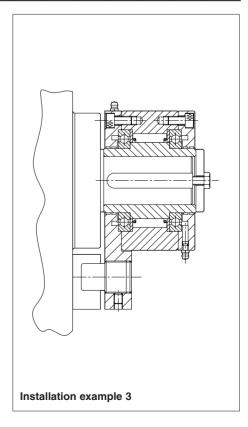
 Model No's. MZEU12 to MZEU80 are pre-greased and require no lubrication. The operational temperature range is -40°C to +40°C.
 Model No's. MZEU90 to MZEU150 require oil lubrication. (Refer to lubrication and

maintenance on page 31).


- 2. We recommend a Shaft tolerance of h7, and ISO R773 (DIN 6885.1) keyway is standard.
- 3. We recommend tolerances of B H7 or H8 for sprockets, gears and other fitted parts.
- 4. The clutch is delivered with a Basic type Cam Clutch, E1 flange and E2 flange as separate parts.
- 5. Clean the surface of both ends of the outer race and the contact surfaces of the flanges.
- 6. For Model No's. MZEU90 to MZEU150, apply seal adhesive to the surface of the outer race at both ends.
- 7. Check the direction of rotation and attach the E1 and E2 flanges to clutch.
- 8. When installing sprockets, gears and other equipment to the clutch, fit them on the surface of the outer race and screw the bolts into the E1 flange.
- 9. By installing both the flange and sprocket on the opposite side, the direction of rotation can be changed.
- 10. When mounting the clutch onto the shaft, apply pressure to inner race but never to the outer race.
- 11. For high speed Indexing applications (More than 50 c/m) a strong spring type is recommended.
- 12. Model No. MZEU K

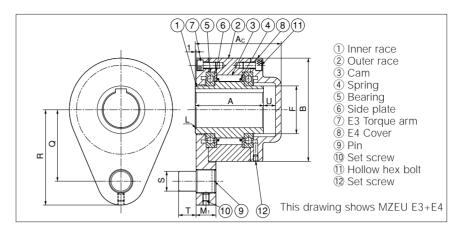
- No Mark: No keyway on the outer race. K: Keyway on the outer race.

E2 Flange + E3 Torque arm


Dimensions and Capacities

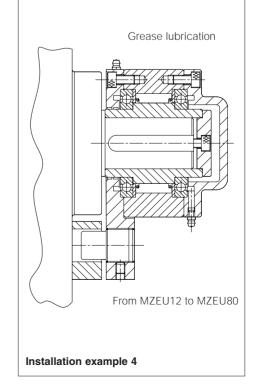
	Torque	Max. Overru	nning Speed	Drag	D 01	.,			_					-	_	Ī.,, , , ,
Model	Capacity	Inner Race	Outer Race	Torque	Bore Size	Keyway	Α	В	F	L	M1	Q	R	S	Т	Weight
	N∙m	r/min	r/min	N∙m	H7			h7		С						Kg
MZEU 12 (K) E2+E3	60	2,000	1,000	0.20	12	4 × 1.8	42	62	20	0.8	13.5	44	59	10	10	1.0
MZEU 15 (K) E2+E3	100	1,800	900	0.20	15	5 × 2.3	52	68	25	0.8	13.5	47	62	10	10	1.4
MZEU 20 (K) E2+E3	245	1,600	700	0.29	20	6 × 2.8	57	75	30	0.8	15.0	54	72	12	11	1.8
MZEU 25 (K) E2+E3	425	1,600	600	0.33	25	8 × 3.3	60	90	40	0.8	19.0	62	84	16	14	2.7
MZEU 30 (K) E2+E3	735	1,500	500	0.39	30	8 × 3.3	68	100	45	1.0	19.0	68	92	16	14	4.1
MZEU 35 (K) E2+E3	1,015	1,400	300	0.49	35	10 × 3.3	74	110	50	1.0	22.0	76	102	20	18	5.1
MZEU 40 (K) E2+E3	1,350	1,400	300	0.59	40	12×3.3	86	125	55	1.3	22.0	85	112	20	18	7.4
MZEU 45 (K) E2+E3	1,620	1,400	300	0.69	45	14 × 3.8	86	130	60	1.3	25.0	90	120	25	22	9.1
MZEU 50 (K) E2+E3	2,070	1,300	250	0.79	50	14 × 3.8	94	150	70	1.3	25.0	102	135	25	22	11.6
MZEU 55 (K) E2+E3	2,400	1,300	250	0.88	55	16 × 4.3	104	160	75	1.5	30.0	108	142	32	25	14.6
MZEU 60 (K) E2+E3	2,950	1,200	250	0.98	60	18 × 4.4	114	170	80	1.5	30.0	112	145	32	25	17.0
MZEU 70 (K) E2+E3	4,210	1,100	250	1.27	70	20 × 4.9	134	190	90	1.8	35.0	135	175	38	30	25.4
MZEU 80 (K) E2+E3	5,170	800	200	1.38	80	22 × 5.4	144	210	105	1.8	35.0	145	185	38	30	32.6
MZEU 90 (K) E2+E3	12,000	450	150	4.70	90	25×5.4	158	230	120	2.0	45.0	155	205	50	40	38.9
MZEU100 (K) E2+E3	17,600	400	130	5.39	100	28 × 6.4	182	270	140	2.0	45.0	180	230	50	40	65.2
MZEU130 (K) E2+E3	24,500	320	110	6.76	130	32 × 7.4	212	310	160	2.5	60.0	205	268	68	55	97.3
MZEU150 (K) E2+E3	33,800	240	80	8.13	150	36 × 8.4	246	400	200	2.5	60.0	255	325	68	55	191.4

Installation and Usage


- 1. Model No's. MZEU12 to MZEU80 are pre-greased and require no lubrication. The operational temperature range is -40°C to +40°C. Model No's. MZEU90 to MZEU150 require oil lubrication. (Refer to lubrication and maintenance on page 31).
- 2. We recommend a Shaft tolerance of h7, and ISO R773 (DIN 6885.1) keyway is standard.
- 3. The clutch is delivered with a Basic type Cam Clutch, E2 flange and E3 torque arm as separate parts.
- 4. Clean the surface of the outer race at both ends and the contact surfaces of the E2 flange and the E3 torque arm.
- 5. For Model No's. MZEU90 to MZEU150, apply seal adhesive to the surface of the outer race at both ends.
- 6. Check the direction of rotation and attach the E2 flange and the E3 torque arm to the clutch.
- 7. By installing both the flange and sprocket on the opposite side, the direction of rotation can be changed.
- 8. When mounting the clutch onto the shaft, apply pressure to inner race but never to the outer race.
- 9. For high speed Indexing applications (More than 50 c/m) a strong spring type is recommended.
- 10. Model No. MZEU K

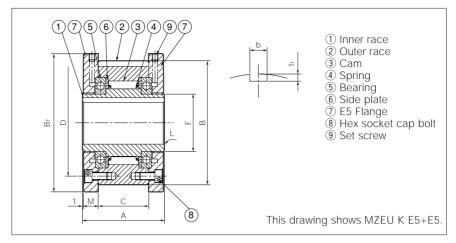
No Mark: No keyway on the outer race.
 K: Keyway on the outer race.

E3 Torque arm + E4 Cover


Dimensions and Capacities

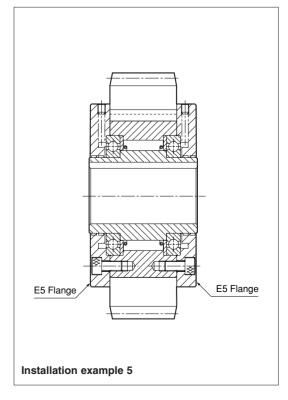
	Torque	Max. Overru	nning Speed	Drag	D 01					_						_		
Model	Capacity	Inner Race	Outer Race	Torque	Bore Size	Keyway	Α	Ac	В	F	L	M1	Q	R	S	l	U	Weight
	N⋅m	r/min	r/min	N∙m	H7				h7		С							Kg
MZEU 12 (K) E3+E4	60	2,000	1,000	0.20	12	4 × 1.8	42	53	62	20	0.8	13.5	44	59	10	10	6	1.0
MZEU 15 (K) E3+E4	100	1,800	900	0.20	15	5×2.3	52	68	68	25	0.8	13.5	47	62	10	10	10	1.5
MZEU 20 (K) E3+E4	245	1,600	700	0.29	20	6 × 2.8	57	73	75	30	0.8	15.0	54	72	12	11	10	2.0
MZEU 25 (K) E3+E4	425	1,600	600	0.33	25	8 × 3.3	60	76	90	40	0.8	19.0	62	84	16	14	10	2.9
MZEU 30 (K) E3+E4	735	1,500	500	0.39	30	8 × 3.3	68	84	100	45	1.0	19.0	68	92	16	14	10	4.3
MZEU 35 (K) E3+E4	1,015	1,400	300	0.49	35	10 × 3.3	74	92	110	50	1.0	22.0	76	102	20	18	12	5.3
MZEU 40 (K) E3+E4	1,350	1,400	300	0.59	40	12 × 3.3	86	105	125	55	1.3	22.0	85	112	20	18	12	7.8
MZEU 45 (K) E3+E4	1,620	1,400	300	0.69	45	14 × 3.8	86	108	130	60	1.3	25.0	90	120	25	22	15	9.6
MZEU 50 (K) E3+E4	2,070	1,300	250	0.79	50	14 × 3.8	94	113	150	70	1.3	25.0	102	135	25	22	12	12.1
MZEU 55 (K) E3+E4	2,400	1,300	250	0.88	55	16 × 4.3	104	126	160	75	1.5	30.0	108	142	32	25	15	15.2
MZEU 60 (K) E3+E4	2,950	1,200	250	0.98	60	18 × 4.4	114	137	170	80	1.5	30.0	112	145	32	25	15	17.7
MZEU 70 (K) E3+E4	4,210	1,100	250	1.27	70	20 × 4.9	134	164.5	190	90	1.8	35.0	135	175	38	30	22.5	26.5
MZEU 80 (K) E3+E4	5,170	800	200	1.38	80	22 × 5.4	144	168	210	105	1.8	35.0	145	185	38	30	16	33.6
MZEU 90 (K) E3+E4	12,000	550	150	3.76	90	25×5.4	158	192	230	120	2.0	45.0	155	205	50	40	27	39.0
MZEU100 (K) E3+E4	17,600	500	130	4.31	100	28 × 6.4	182	217	270	140	2.0	45.0	180	230	50	40	28	67.4
MZEU130 (K) E3+E4	24,500	400	110	5.39	130	32×7.4	212	250	310	160	2.5	60.0	205	268	68	55	30	100.2
MZEU150 (K) E3+E4	33,800	300	80	6.47	150	36 × 8.4	246	286	400	200	2.5	60.0	255	325	68	55	32	194.8

Installation and Usage


- 1. Model No's. MZEU12 to MZEU80 are pre-greased and require no lubrication. The operational temperature range is –40°C to +40°C. Model No's. MZEU90 to MZEU150 require oil lubrication. (Refer to lubrication and maintenance on page 31).
- 2. We recommend a Shaft tolerance of h7, and the DIN 6885.1 keyway is standard.
- 3. The clutch is delivered with a Basic type Cam Clutch, E3 torque arm and E4 cover as separate parts.
- 4. Clean the surface of both ends of the outer race and the contact surface of E3 torque arm and E4 cover.
- 5. For Model No's. MZEU90 to MZEU150, apply seal adhesive to the surface of the outer race at both ends.
- 6. Check the direction of rotation and attach the E3 torque arm to the clutch.
- 7. By installing both the flange and sprocket on the opposite side, the direction of rotation can be changed.
- 8. When mounting the clutch onto the shaft, apply pressure to inner race but never to the outer race.
- 9. For Model No's. MZEU12 to MZEU80, before mounting the E4 cover to the clutch attach the end plate with bolts. Refer to installation example 4.
- 10. For Model No's. MZEU90 to MZEU150, before mounting the cover attach the packing and end plate using sealing washers and bolts. Refer to installation example 5.
- 11. Model No. MZEU K

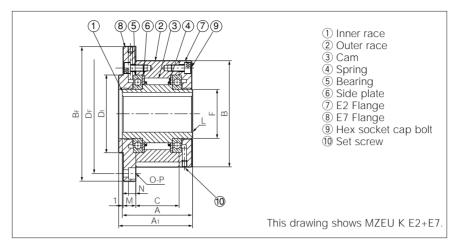
No Mark: No keyway on the outer race. K: Keyway on the outer race.

E5+E5


Dimensions and Capacities

Dimensions in mm

	Torque	Max. Overru	nning Speed	Drag	D C!	1/	_	_	_	_	7	F	,		-		\
Model	Capacity	Inner Race	Outer Race	Torque	Bore Size	Keyway	Α	В	BF	С	D	1	L	М	b	t ₁	Weight
	N⋅m	r/min	r/min	N∙m	H7			h7					С		P10		kg
MZEU 12 K E5+E5	60	2000	1000	0.20	12	4 × 1.8	42	62	70	20	51	20	0.8	10.0	4	2.5	0.5
MZEU 15 K E5+E5	100	1800	900	0.20	15	5×2.3	52	68	76	28	56	25	0.8	11.0	5	3.0	0.8
MZEU 20 K E5+E5	245	1600	700	0.29	20	6 × 2.8	57	75	84	34	64	30	0.8	10.5	6	3.5	1.2
MZEU 25 K E5+E5	425	1600	600	0.33	25	8 × 3.3	60	90	99	35	78	40	0.8	11.5	8	4.0	1.8
MZEU 30 K E5+E5	735	1500	500	0.39	30	8 × 3.3	68	100	109	43	87	45	1.0	11.5	8	4.0	2.6
MZEU 35 K E5+E5	1015	1400	300	0.49	35	10 × 3.3	74	110	119	45	96	50	1.0	13.5	10	5.0	3.2
MZEU 40 K E5+E5	1350	1400	300	0.59	40	12×3.3	86	125	135	53	108	55	1.3	15.5	12	5.0	4.8
MZEU 45 K E5+E5	1620	1400	300	0.69	45	14×3.8	86	130	140	53	112	60	1.3	15.5	14	5.5	6.2
MZEU 50 K E5+E5	2070	1300	250	0.79	50	14×3.8	94	150	160	64	132	70	1.3	14.0	14	5.5	8.2
MZEU 55 K E5+E5	2400	1300	250	0.88	55	16 × 4.3	104	160	170	66	138	75	1.5	18.0	16	6.0	9.5
MZEU 60 K E5+E5	2950	1200	250	0.98	60	18 × 4.4	114	170	182	78	150	80	1.5	17.0	18	7.0	12.3
MZEU 70 K E5+E5	4210	1100	250	1.27	70	20 × 4.9	134	190	202	95	165	90	1.8	18.5	20	7.5	18.1
MZEU 80 K E5+E5	5170	800	200	1.38	80	22×5.4	144	210	222	100	185	105	1.8	21.0	22	9.0	23.1
MZEU 90 K E5+E5	12000	450	150	4.70	90	25×5.4	158	230	242	115	206	120	2.0	20.5	25	9.0	28.1
MZEU100 K E5+E5	17600	400	130	5.39	100	28 × 6.4	182	270	282	120	240	140	2.0	30.0	28	10.0	46.3
MZEU130 K E5+E5	24500	320	110	6.76	130	32×7.4	212	310	322	152	278	160	2.5	29.0	32	11.0	70.2
MZEU150 K E5+E5	33800	240	80	8.13	150	36 × 8.4	246	400	412	180	360	200	2.5	32.0	36	12.0	146.3

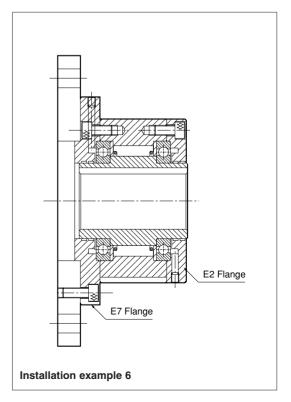

Installation and Usage

- 1. The clutch is delivered with a Basic type Cam Clutch, two E5 flanges, and flange kit as separate parts.
- 2. Check the direction of rotation and attach an E5 flange to the clutch by the bolt.
- 3. When installing sprocket, gear and other equipment to the clutch, install them on the outer race and fix the key between the equipment and the outer race.
- 4. We recommend a tolerance of H7 for the bore of the sprocket, gear or other equipment.
- 5. Attach the opposite side E5 flange to the clutch by the bolts.
- 6. By installing the clutch to the shaft on the opposite side, the direction of rotation can be changed.
- 7. When mounting the clutch onto the shaft, apply pressure to the inner race but never to the outer race.
- 8. For high speed indexing applications (More than 50 c/min) a strong spring type is recommended.
- 9. Refer to page 31 for other usage.
- 10. E5+E5 flange is available only for MZEU K model.

E2+E7

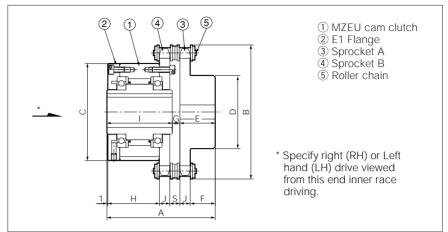
Dimensions and Capacities

Dimensions in mm


	Torque	Max. Overru	nning Speed	Drag	Bore	IX	_	_	_	_	_	_		_			N.	0.0)
Model	Capacity	Inner Race	Outer Race	Torque	Size	Keyway	Α	A ₁	В	B⊧	С	D ₁	DF	F	L	M	N	O-P	Weight
	N∙m	r/min	r/min	N⋅m	H7				h7			h7			С				kg
MZEU 12 (K) E2+E7	60	2000	1000	0.20	12	4 × 1.8	42	44	62	85	20	42	72	20	0.8	10.0	5.7	3 - \$ 5.5	0.5
MZEU 15 (K) E2+E7	100	1800	900	0.20	15	5 × 2.3	52	54	68	92	28	47	78	25	0.8	11.0	5.7	3 - Ø 5.5	0.8
MZEU 20 (K) E2+E7	245	1600	700	0.29	20	6 × 2.8	57	59	75	98	34	55	85	30	0.8	10.5	5.7	4 - φ5.5	1.2
MZEU 25 (K) E2+E7	425	1600	600	0.33	25	8 × 3.3	60	62	90	118	35	68	104	40	0.8	11.5	6.8	4 - φ6.6	1.8
MZEU 30 (K) E2+E7	735	1500	500	0.39	30	8 × 3.3	68	70	100	128	43	75	114	45	1.0	11.5	6.8	6 - <i>ф</i> 6.6	2.6
MZEU 35 (K) E2+E7	1015	1400	300	0.49	35	10 × 3.3	74	76	110	140	45	80	124	50	1.0	13.0	6.8	6 - <i>ф</i> 6.6	3.2
MZEU 40 (K) E2+E7	1350	1400	300	0.59	40	12 × 3.3	86	88	125	160	53	90	142	55	1.3	15.0	9.0	6 - φ 9.0	4.8
MZEU 45 (K) E2+E7	1620	1400	300	0.69	45	14 × 3.8	86	88	130	165	53	95	146	60	1.3	15.0	9.0	8 - φ 9.0	6.2
MZEU 50 (K) E2+E7	2070	1300	250	0.79	50	14 × 3.8	94	96	150	185	64	110	166	70	1.3	13.0	9.0	8 - φ 9.0	8.2
MZEU 55 (K) E2+E7	2400	1300	250	0.88	55	16 × 4.3	104	106	160	204	66	115	182	75	1.5	17.0	11.0	8 - φ 11.0	9.5
MZEU 60 (K) E2+E7	2950	1200	250	0.98	60	18 × 4.4	114	116	170	214	78	125	192	80	1.5	16.0	11.0	10 - \$\phi 11.0	12.3
MZEU 70 (K) E2+E7	4210	1100	250	1.27	70	20 × 4.9	134	136	190	234	95	140	212	90	1.8	17.5	11.0	10 - \$\phi 11.0	18.1
MZEU 80 (K) E2+E7	5170	800	200	1.38	80	22 × 5.4	144	146	210	254	100	160	232	105	1.8	20.0	11.0	10 - φ 11.0	23.1
MZEU 90 (K) E2+E7	12000	450	150	4.70	90	25 × 5.4	158	160	230	278	115	180	254	120	2.0	19.0	13.0	10 - \$\phi 14.0	28.1
MZEU100 (K) E2+E7	17600	400	130	5.39	100	28 × 6.4	182	184	270	335	120	210	305	140	2.0	28.0	17.5	10 - \$\phi 18.0	46.3
MZEU130 (K) E2+E7	24500	320	110	6.76	130	32 × 7.4	212	214	310	380	152	240	345	160	2.5	27.0	17.5	12 – φ 18.0	70.2
MZEU150 (K) E2+E7	33800	240	80	8.13	150	36 × 8.4	246	248	400	485	180	310	445	200	2.5	30.0	21.5	12 – φ22.0	146.3

Installation and Usage

- 1. The clutch is delivered with a Basic type Cam Clutch, E2 flange, E7 flange and each flange kit as separate parts.
- 2. Check the direction of rotation and attach the each flange to the
- 3. When installing sprocket, gear and other equipment to the clutch, fit them on the surface of the outer race or flange and screw the bolt in to them.
- 4. By installing both option parts on the opposite side, the direction of rotation can be changed.
- 5. When mounting the clutch onto the shaft, apply pressure to the inner race but never to the outer race.
- 6. For high speed indexing applications (more than 50 c/min) a strong spring type is recommended.
- 7. Refer to page 31 for other Usage.
- 8. Model No. MZEU K


- No Mark: No keyway on the outer race. K: Keyway on the outer race.

Notes: Do not apply a large overhung load to the outer race by using E7 flange to keep the centerline between the inner and outer race.

COUPLING

Dimensions	and Capa	cities															Dime	nsions	in mm
	Torque	Max. Overru	nning Speed	Drag	Clu	ıtch Side	Coupli	ng Side	_	_		_	_	_	_		-		
Model	Capacity	Inner Race	Outer Race	Torque	Stock	k Bore Size	Bore Dia	a. Range	A	В	С	D	E	1	G	H	- 1	J	S
	N⋅m	r/min	r/min	N⋅m	H7	Keyway	min.	max.			h7								
MZEU12 (K)-C	60	2,000	1,000	0.20	12	4 × 1.8	14	45	70.6	93	62	67	25	17.8	3.6	30.0	42	7.2	7.4
MZEU15 (K)-C	100	1,800	900	0.20	15	5 × 2.3	14	50	79.6	101	68	75	25	17.8	2.6	39.0	52	7.2	7.4
MZEU20 (K)-C	245	1,600	700	0.29	20	6 × 2.8	14	42	85.1	109	75	63	25	17.8	3.1	44.5	57	7.2	7.4
MZEU25 (K)-C	425	1,600	600	0.33	25	8 × 3.3	18	47	93.9	127	90	73	28	19.3	5.9	46.5	60	8.7	9.7
MZEU30 (K)-C	735	1,500	500	0.39	30	8 × 3.3	18	47	101.9	137	100	73	28	19.3	5.9	54.5	68	8.7	9.7
MZEU35 (K)-C	1,015	1,400	300	0.49	35	10 × 3.3	18	55	122.7	152	110	83	40	28.3	8.7	58.5	74	11.7	11.5
MZEU40 (K)-C	1,350	1,400	300	0.59	40	12 × 3.3	20	55	132.7	164	125	83	40	28.3	6.7	68.5	86	11.7	11.5
MZEU45 (K)-C	1,620	1,400	300	0.69	45	14 × 3.8	20	55	132.7	176	130	83	40	28.3	6.7	68.5	86	11.7	11.5
MZEU50 (K)-C	2,070	1,300	250	0.79	50	14 × 3.8	20	55	142.2	200	150	83	40	28.3	8.2	78.0	94	11.7	11.5
MZEU55 (K)-C	2,400	1,300	250	0.88	55	16 × 4.3	30	75	159.8	219	160	107	45	30.4	10.8	84.0	104	14.6	15.2
MZEU60 (K)-C	2,950	1,200	250	0.98	60	18 × 4.4	30	75	170.8	235	170	107	45	30.4	11.8	95.0	114	14.6	15.2
MZEU70 (K)-C	4,210	1,100	250	1.27	70	20 × 4.9	30	75	189.3	251	190	107	45	30.4	10.3	113.5	134	14.6	15.2
M7FU80 (K)-C	5 170	800	200	1 38	80	22 × 5 4	30	75	196.8	267	210	107	45	30.4	7.8	121 0	144	14 6	15.2

Installation and Usage

- 1. MZEU (K)-C series Cam Clutch couplings make use of MZEU (K) series and CR type couplings without cover.
- 2. Mount the Cam Clutch loosely on the high speed shaft at first.
- 3. Accurately align both sprockets by checking with a straight edge on the teeth of both sprockets.
- 4. Check whether the clearance(S) between both sprokets are correct, then wrap the chainaround the sprockets.
- 5. Specify right hand (RH) or left hand (LH) as inner race overrunning direction from the view of Cam Clutch side (*) See the above drawing.
- 6. The same lubricaion as for Tsubaki roller chain is necessary for the coupling chain.
- 7. Ensure that the chain is properly closed with a connecting link and that the closed of the spring clip is installed in the same direction as the rotation of the outer race.
- 8. Model No. MZEU <u>K</u>

— No Mark: No keyway on the outer race.

K: Keyway on the outer race.

■ LUBRICATION AND MAINTENANCE

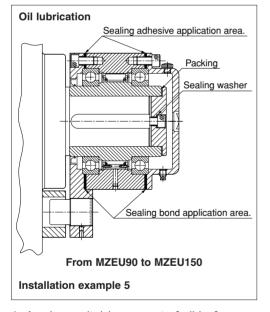
Model No's. MZEU12 to MZEU80 are pre-greased and require no lubrication. The operational temperature range is -40° C to $+40^{\circ}$ C.

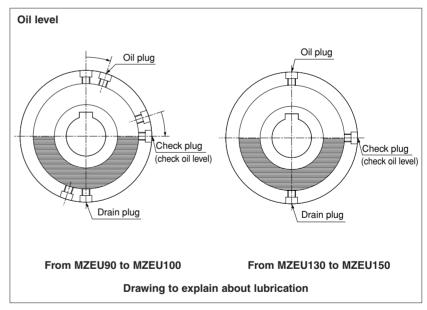
Model No's. MZEU90 to MZEU150 require oil lubrication.

Recommended Grease for Model No's, MZEU12 to MZEU80

Oil Company	Ambient Temperature						
Oil Company	-5°C ∼ +40°C	-40°C ∼ +40°C					
Esso	Beacon 2	Beacon 325					
Mobil	Mobilux Grease No.2	Mobil temp SHC100					
Shell	Alvania Grease No.2	Alvania Grease RA					
ВР	Energrease LS2	Enargrease LT2					
TOTAL	Multis 2	Aerogrease 22					

Note: Do not use oil that contains EP additives.


E1~E4 options are supplied with bolts for installation, and grease nipple.

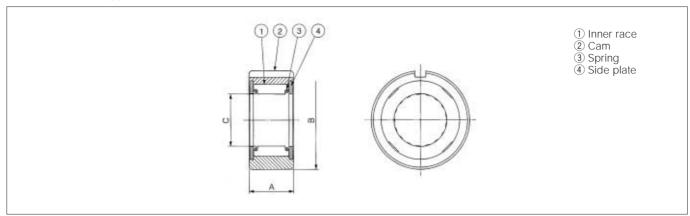

Recommended oil for from MZEU90 to MZEU150

Oil Commonu	Ambient Temperature							
Oil Company	-10°C ∼ +30°C	+30°C ∼ +50°C						
Esso	Telesso 32, Essolub D-3 10W, ATF Dexron	Essolub D-3 30						
Mobil	ATF 220, Delvac 1310, DTE oil Light	Delvac 1330						
Chall	Dexron II, Rimulla CT oil 10W,	Rimulla CT Oil 20W/20, 30						
Shell	Shell Clavus Oil 17, Rotella S Oil 10W	Rotella S Oil 20W/20, 30						
BP	BP Energol THB32	_						
Gulf	Harmony 32, Veritas SD10	Veritas SD30						

Note: Do not use oil that contains EP additives.

Body (Basic type) is supplied with sealing adhesive.

- 1. Apply a suitable amount of oil before use.
- 2. As a general rule, the amount of lubricant should be level with the center of the shaft for overrunning or backstopping.
- 3. The E2 flange has three plugs. The E4 cover has a large plug for adding oil and two small plugs for checking and draining.
- 4. Place the plugs, so that one is at the top and one is at the bottom. The center one should be level with the center of the shaft
- 5. Pour oil into the clutch until it overflows from check plug. After a few minutes, pour in more oil and check that it overflows again.


Maintenance

Model	Lubricant	Maintenance
MZEU12 ~ MZEU80	Grease	From the grease nipple on the flange, the torque arm and the cover add grease every 3 months.
MZEU90 ~ MZEU150	Oil	Initially, replace oil after 10 hours of operation. Then replace it every 3 months. In a dirty environment, we recommend replacement every month.

200 SERIES CAM CLUTCH

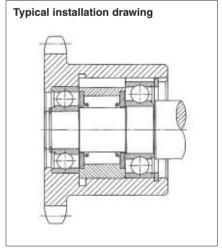
■ MODELS B203 TO B214

Shaft-Mounted Type

Dimensions and Capacities

Dimensions in mm

Model	Max. Torque (N·m)	Nominal Overrunning Drag (N·m)	Ma Overru (r/n Shaft		Max. Indexing (cycle/min.)	$A \begin{pmatrix} +0 & to \\ -0.06 \end{pmatrix}$	В	Shaft Dia. C (+0 to -0.025)	Keyway	Use with JIS Bearing Number	Weight (kg)
B 203	39.2	0.098	2,400	500	150	25.0	40 -0.014	16.510	4 × 2.5	6203	0.23
B 204	58.8	0.098	2,400	500	150	25.0	47 -0.014 -0.039	18.796	5 × 3	6204	0.34
B 205	98	0.196	1,800	400	150	25.0	52 -0.017 -0.042	23.622	5 × 3	6205	0.45
B 206	235	0.196	1,800	350	150	28.0	62 ^{-0.017} -0.042	32.766	7 × 4	6206	0.68
B 207	372	0.196	1,800	300	150	28.0	72 ^{-0.017} -0.042	42.088	7 × 4	6207	0.80
B 208	549	0.196	1,800	200	150	32.0	80 ^{-0.017} -0.042	46.761	10 × 4.5	6208	0.91
B 209	549	0.196	1,800	200	150	32.0	85 ^{-0.020} -0.045	46.761	10 × 4.5	6209	0.95
B 210	784	0.294	1,200	200	150	32.0	90 ^{-0.020} -0.045	56.109	10 × 4.5	6210	1.00
B 211	784	0.294	1,200	200	150	32.0	100 ^{-0.020} -0.050	56.109	10 × 4.5	6211	1.40
B 212	1,230	0.294	1,200	180	150	42.0	110 ^{-0.020} -0.050	70.029	10 × 4.5	6212	1.80
B 213	1,230	0.294	1,200	180	150	42.0	120 ^{-0.020} -0.050	70.029	10 × 4.5	6213	2.30
B 214	1,390	0.392	1,000	180	150	42.0	125 -0.024 -0.060	79.356	12 × 4.5	6214	2.40


Note: Stronger spring type "B---SS" is availabe. when an inner race is needed, order "B---IR".

Installation and Usage

- 1. 200 Series Cam Clutch is shaft mounted, so the shaft on which the clutch is mounted must be hardened to Rc 56-60 and 1.5 mm case depth after grinding. Grind to 1.5S (16micro-inch) finish. The taper of this shaft should not exceed 0.01 mm per 50mm.
- 2. For installation of the clutch, mount the clutch with bearings at both sides or on one side in order to obtain concentricity between the shaft and the clutch outer race and to take up radial or thrust loads which may work on the outer race or the shaft. See the installation example.
- The clutch should be mounted on the shaft by rotating it in the direction marked by the arrow shown on the clutch plate. Do

- not apply shock to the clutch by hammering.
- 4. The clutches have the same outside diameters as the bearings shown in the table above. Bore tolerance of the housing in which the clutch is assembled should be within the range shown in the table below.
- 5. For indexing, oil lubrication is recommended.
- 6. Concentricity of the housing bore and shaft should be within 0.05 mm.
- 7. Key profile should be in accordance with JIS B1301-1959.

Model	Tolerance of housing bore (mm)
B 203, B 204	+0 to +0.025
B 205, B 206, B 207, B 208	+0 to +0.030
B 210, B 211, B 212, B 213	+0 to +0.035
B 214	+0 to +0.040

- See "information for Selection" on page 73.
 See "Lubrication and Maintenance" on
- page 75.

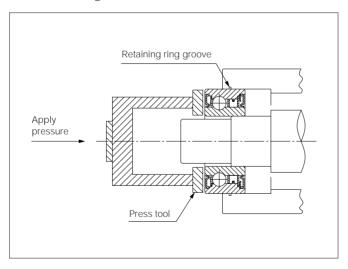
BB SERIES CAM CLUTCH

BB series

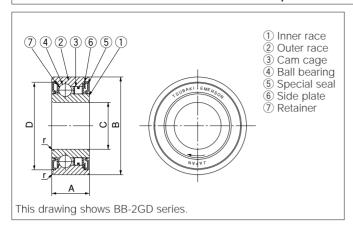
BB-1K-K series

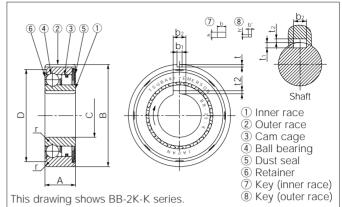
BB-2K-K series

BB-2GD series


BB-2GD 1K-K series

General information of Installation and usage for BB series Cam Clutch


- 1. BB series Cam Clutch is designed for press fit installation.
- 2. BB-1K-K and BB-2GD 1K-K series have a keyway on the inner race. Keyways, except size 25 are manufactured to DIN 6885. 3, BB40-1K-K and BB40-2GD 1K-K are manufactured to DIN 6885. 1.
- 3. BB-2K-K series has a keyway on both the inner and outer race.
 - "-K" means keys shipped together with Cam Clutch.
- 4. Correct interference dimensions at the shaft and the housing must be maintained to obtain maximum bearing and clutch performance.
- 5. Refer to the table on next page for tolerance of the shaft and housing for each series.
- 6. BB-2GD and BB-2GD 1K-K series have special lip seals for the effective protection against dust.
- 7. The arrow on the inner race shows the direction of inner race engaging.
- 8. To install the clutch, use a press tool of the appropriate diameter to apply even pressure over the entire face of the inner and outer race.
- 9. Do not hammer or apply other shock to the clutch.
- 10. Make sure the housing has enough strength to withstand the pressure required for the press fitting installation of the Clutch.
- 11. Operating temperature range: -30°C to +100°C (Consult us for the temperature that exceeds this range).


Lubrication

- 1. Since grease is already applied before delivery, there is no need to apply grease before use.
- 2. If the clutch is used with an oil lubricant, the oil lubrication should be applied inside the unit always.
- 3. Do not use greases or lubricants with EP additives.

BB SERIES CAM CLUTCH BB, BB-1K-K, BB-2K-K, BB-2GD, BB-2GD 1K-K

Dimensions and Capacities

Dimensions in mm Max. Overrunning speed Drag Torque (N·m) Α D Weight (g) Bearing Loads Torque Capacity ВВ ВВ ВВ ВВ Size Inner Race Outer Race С C C_0 В BB-2GD BB-2GD BB-2GD BB-2GD BB-1K-K BB-1K-k BB-1K-K BB-1K-K BB-2K-K BB-2GD 1K-K BB-2GD 1K-K BB-2GD 1K-K BB-2GD 1K-K N·m r/min r/min N Ν BB-2K-K BB-2K-K BB-2K-K BB15 29 3600 2000 0.010 0.040 11 35 15 32.6 32.45 50 5950 3230 16 BB17 43 3500 1900 0.010 0.050 12 17 40 17 36.1 36.45 0.6 80 100 7000 3700 BB20 3000 8500 61 1600 0.014 0.055 14 19 47 20 41.7 42.35 1.0 120 150 4900 BB25 78 2500 1400 0.017 0.055 15 20 52 25 47.1 47.05 1.0 150 200 10700 6300 BB30 2000 140 1100 0.030 0.058 16 21 62 30 56.6 55.60 1.0 230 280 11900 7900 **BB35** 173 1800 1000 0.034 0.060 17 22 72 35 64.0 64.60 1.1 320 410 13500 9700

> 80 40

71.0

71.60

1.1

400

BB35-2K-K BB40-2K-K

600

14500

Shaft Dia. Housing Dia.

11700

Dimensions in mm

72 -0.006

80 -0.006

27 Note: Model No. marked on the inner race is only "K" for both "1K" and "2K". (Example: the mark "BB25-K" for both BB25-1K and BB25-2K)

22

Tolerance for Shaft and Housing

1800

900

0.040

0.080

BB40

260

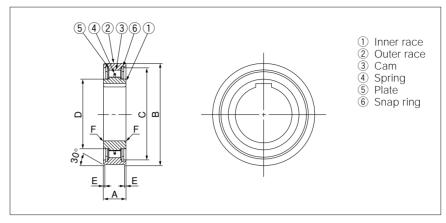
N	Model	Shaft Dia.	Housing Dia.		
BB15	BB15-2GD	15 +0.023 +0.012	35 -0.012 -0.028		
BB17	BB17-2GD	17 +0.023 +0.012	40 -0.012 -0.028		
BB20	BB20-2GD	20 +0.028 +0.015	47 -0.012		
BB25	BB25-2GD	25 +0.028 +0.015	52 -0.014		
BB30	BB30-2GD	30 +0.028 +0.015	62 -0.014		
BB35	BB35-2GD	35 +0.033 +0.017	72 -0.014		
BB40	BB40-2GD	40 +0.033 +0.017	80 -0.014		

N	/lodel	Shaft Dia.	Housing Dia.
BB15-1K-K	BB15-2GD 1K-K	15 -0.008	35 -0.012 -0.028
BB17-1K-K	BB17-2GD 1K-K	17 -0.008	40 -0.012 -0.028
BB20-1K-K	BB20-2GD 1K-K	20 -0.010	47 -0.012 -0.028
BB25-1K-K	BB25-2GD 1K-K	25 -0.010	52 -0.014 -0.033
BB30-1K-K	BB30-2GD 1K-K	30 -0.010	62 -0.014 -0.033
BB35-1K-K	BB35-2GD 1K-K	35 -0.012 -0.037	72 -0.014 -0.033
BB40-1K-K	BB40-2GD 1K-K	40 -0.012 -0.037	80 -0.014 -0.033

		3
BB15-2K-K	15 -0.008	35 -0.002
BB17-2K-K	17 -0.008	40 -0.002
BB20-2K-K	20 -0.010	47 -0.003
BB25-2K-K	25 -0.010	52 -0.003
BB30-2K-K	30 -0.010	62 -0.003

35 -0.012 -0.037

40 -0.012


Dimensions of	Dimensions of keyways and keys Dimensions in mi										
N	b2 js10	t1	t2	b1 js9	t	Inner race Key b×h×length	Outer race Key b' x h' x length				
BB15-1K-K	BB15-2GD 1K-K	5.0	1.9	1.2	_	_	_	_			
BB15-2K-K	_	3.0	1.9	1.2	2.0	0.6	5 × 3 × 11	2 × 2 × 11			
BB17-1K-K	BB17-2GD 1K-K	5.0	1.9	1.2	_		_	_			
BB17-2K-K	_	3.0	1.9	1.2	2.0	1.0	5 × 3 × 12	2 × 2 × 12			
BB20-1K-K	BB20-2GD 1K-K	6.0	2.5	1.6	_		_	_			
BB20-2K-K	_	0.0			3.0	1.5	6 × 4 × 14	3 × 3 × 14			
BB25-1K-K	BB25-2GD 1K-K	8.0	3.6	1.5	_		_	_			
BB25-2K-K	_	0.0	3.0	1.5	6.0	2.0	8 × 5 × 15	6 × 4 × 15			
BB30-1K-K	BB30-2GD 1K-K	8.0	3.1	2.0	_		_	_			
BB30-2K-K	_	0.0	J. I	2.0	6.0	2.0	8 × 5 × 16	6 × 4 × 16			
BB35-1K-K	BB35-2GD 1K-K	10.0	3.7	2.4	_		_	_			
BB35-2K-K	_	10.0	J./	2.4	8.0	2.5	$10 \times 6 \times 17$	8 × 5 × 17			
BB40-1K-K	BB40-2GD 1K-K	12.0	5.0	3.3	_		_	_			
BB40-2K-K	_	12.0	5.0	٥.٥	10.0	3.0	12 × 8 × 22	10 × 6 × 22			

Note: The dimension of t2 for BB25-1K-K, BB25-2K-K and BB25-2GD 1K-K is 0.5 mm shallow compared to DIN 6885. 3. Process the keyway on the shaft 0.5 mm deeply to use DIN standard key.

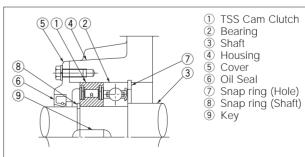
All other models are dimensionally interchangeable with competitors.

TSS SERIES CAM CLUTCH

Dimension	Dimensions and Capacities Dimensions in											ns in mm	
	Torque	Max. Overrunning Speed		Drag	Bore Size								Weight
Model	Capacity	Inner Race	Outer Race	Torque	DOI'E SIZE	Keyway	А	В	С	D	Е	F	vveigni
	N⋅m	r/min	r/min	N∙m	H7								g
TSS 8	6.7	6000	3000	0.005	8	2×1.0	8	24	22.2	11.4	0.6	0.6	14
TSS10	12	4500	2300	0.007	10	3×1.4	9	30	27	15.6	0.6	0.6	27
TSS12	17	4000	2000	0.009	12	4×1.8	10	32	29.5	18	0.6	0.6	31
TSS15	22	3500	1800	0.01	15	5×1.2	11	35	32	20.6	0.6	0.6	39
TSS20	41	2600	1300	0.01	20	6×1.6	14	47	40	26.7	0.8	0.8	115
TSS25	56	2200	1100	0.02	25	8×2.0	15	52	45	32	0.8	0.8	140
TSS30	105	1800	900	0.03	30	8×2.0	16	62	55	40	0.8	1.0	215
TSS35	136	1600	800	0.03	35	10×2.4	17	72	63	45	0.8	1.0	300
TSS40	296	1400	700	0.18	40	12×2.2	18	80	72	50	0.8	1.0	425
TSS45	347	1300	650	0.21	45	14×2.1	19	85	75.5	57	1.2	1.0	495
TSS50	403	1200	600	0.22	50	14×2.1	20	90	82	62	1.2	1.0	545
TSS60	649	910	460	0.33	60	18×2.3	22	110	100	80	1.2	1.5	950

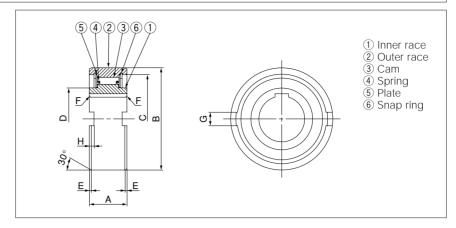
Installation and Usage

- The TSS Series Cam Clutch is designed for press fit installation.
 Correct interference dimensions must be maintained to obtain maximum clutch performance.
 The internal diameter of the housing should meet the H7 tolerance. Refer to item 3 in the installation and usage of BB Series Cam Clutch for information on the installation method.
- 2. Make sure the housing has enough strength to withstand the pressure required for the press fitting installation of the clutch.
- 3. When installing the clutch, mount it with a type 62 bearing to avoid radial force, since this clutch does not have any bearing support.
- 4. Confirm the direction of rotation before installation.
- 5. The recommended shaft tolerance is H7, and the key profile should be in accordance with the following standard.


TSS 8 ~ 12······DIN 6885. 1

TSS 15 ~ 60.....DIN 6885. 3

6. Suitable surface pressure of the key should be selected according to your company design standards.


Lubrication

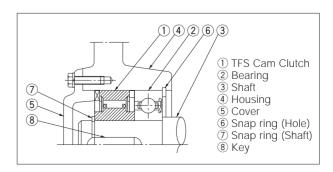
- 1. Oil lubrication is recommended.
- 2. Do not use greases or lubricants with EP additives.

TFS SERIES CAM CLUTCH

Dimensions	:	100 100	
Jimensions	111	[[][[]]	

	· · · · · · ·											DII	11611310	112 111 111111	
	Torque	Max. Overru	nning Speed	Drag	Bore Size										Weight
Model	Capacity	Inner Race	Outer Race	Torque	DOIC SIZE	Keyway	Α	В	С	D	E	F	G	Н	vveigin
	N⋅m	r/min	r/min	N∙m	H7										g
TFS12	18	4500	2300	0.04	12	4×1.8	13	35	30	18	0.6	0.3	4	1.4	68
TFS15	28	3500	1800	0.06	15	5×1.2	18	42	36	22	0.8	0.3	5	1.8	120
TFS17	50	3200	1600	0.11	17	5×1.2	19	47	38	22	1.2	0.8	5	2.3	150
TFS20	84	2500	1300	0.18	20	6×1.6	21	52	45	27	1.2	0.8	6	2.3	220
TFS25	128	2000	1000	0.19	25	8×2.0	24	62	52	35	1.2	0.8	8	2.8	360
TFS30	200	1600	800	0.21	30	8×2.0	27	72	62	40	1.8	1.0	10	2.5	530
TFS35	475	1400	700	0.42	35	10×2.4	31	80	70	48	1.8	1.0	12	3.5	790
TFS40	607	1300	650	0.46	40	12×2.2	33	90	78	54.5	1.8	1.0	12	4.1	1050
TFS45	756	1100	550	0.56	45	14×2.1	36	100	85.3	59	1.8	1.0	14	4.6	1370
TFS50	1124	1000	500	0.60	50	14×2.1	40	110	92	65	1.8	1.0	14	5.6	1900
TFS60	1975	840	420	0.87	60	18×2.3	46	130	110	84	2.6	1.5	18	5.5	3110
TFS70	2514	750	380	0.91	70	20×2.7	51	150	125	91	2.6	1.5	20	6.9	4390
TFS80	3924	670	340	1.22	80	22×3.1	58	170	140	100	2.6	1.5	20	7.5	6440

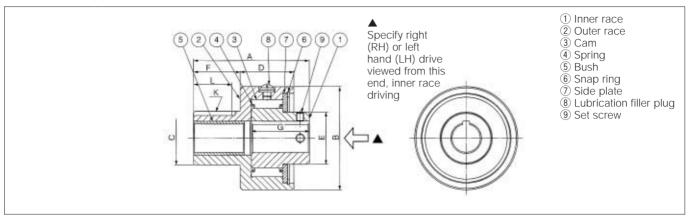
Installation and Usage


- 1. The outer race of the TFS Series Cam Clutch is designed for press fit installation to the housing. Correct interference dimensions of the outer race must be maintained to obtain maximum clutch performance. The internal diameter of the housing should meet the H7 tolerance. Keyways should be made in the end faces of the clutch for proper installation. Refer to item 3 in the installation and usage of BB Series Cam Clutch for information on the installation method. If the tolerance of the internal diameter of the housing is K6, keyways are not required on the end faces of the clutch.
- 2. Make sure the housing has enough strength to withstand the pressure required for the press fitting installation of the clutch
- 3. When installing the clutch, mount it with a type 63 bearing to avoid radial force, since this clutch does not have any bearing support.
- 4. The clutch should be mounted on the shaft by rotating it in the direction marked by the arrow shown on the clutch plate.
- 5. The recommended shaft tolerate is H7, and the key profile should be in accordance with the following standard.

TFS 12DIN 6885. 1 TFS 15 ~ 80.....DIN 6885. 3

6. Suitable surface pressure of the key should be selected according to your company design standards.

Lubrication


- 1. Oil lubrication is recommended.
- 2. Do not use greases or lubricants with EP additives.

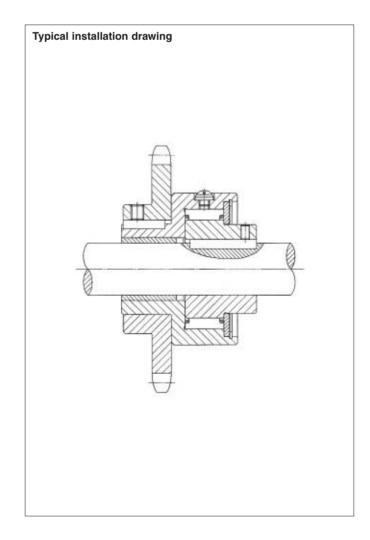
PB SERIES CAM CLUTCH

■ MODELS PB3 TO PB14

For General Applications

Dimensions and Capacities

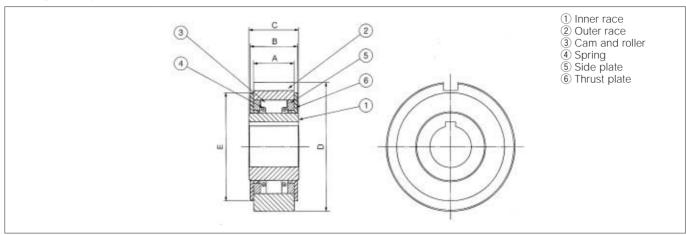
Г.			
Dimen:	รเกทร	ın	mm


Model	Max. Torque	Nominal Overrun- ning Drag	Overru (r/n	ax. unning nin)	Max. indexing			Stock Bore Size												А	В	C (h7)	D	E	F	G	Outer Ra Keywa		Weight (kg)	Lubrication Filler Plug
	(N·m)	(N·m)	Inner Race	Outer Race	(cycle/min.)	Dia. (J7)	Key- way			(117)					K	L	(kg)	Size × Pitch												
PB 3	29.4	0.196	1,800	900	150	10	4 × 1.5	50	50	23	22	25	21	25.7	4 × 2.5	16	0.23	M6 × P1.0												
PB 5	147	0.196	1,800	900	150	16	5 × 2.0	70	60	32	32	35	25	38.8	5×3.0	20	0.58	M6 × P1.0												
PB 6	382	0.196	1,500	800	150	20	5 × 2.0	82	73	38	38	37	33	41.0	5×3.0	27	1.1	M6 × P1.0												
PB 8	568	0.294	1,200	650	150	25	7 × 3.0	85	83	45	40	45	33	42.0	7×4.0	27	1.6	M6 × P1.0												
PB 10	843	0.392	1,000	400	150	31.5	10 × 3.5	92	95	60	41	60	37	44.0	10 × 4.5	28	2.5	M6 × P1.0												
PB 12	1530	0.392	800	300	150	40	10 × 3.5	100	113	65	50	66	37	52.6	10 × 4.5	29	3.6	M6 × P1.0												
PB 14	2110	0.588	700	300	150	45	12×3.5	112	133	75	54	76	41	57.3	12 × 4.5	30	6.0	M6 × P1.0												

Note: When a stronger spring type is required, request "PB-SS".

- 1. Concentricities of the inner race and the outer race are maintained by the plain bearing located between the outer race and the shaft. Radial load which works on the outer race is also supported by this plain bearing. The shaft must therefore be extended through the clutch outer race end.
- 2. Recommended shaft tolerances are as follows:

Model	Tolerance (mm)
PB 3, PB 4,PB 6, PB 8	+0 to -0.013
PB 10, PB 12, PB 14	+0 to -0.016


- 3. Do not use the PB Series Cam Clutch as a coupling. Use with a flexible coupling when connecting two shafts.
- 4. Specify right (RH) or left hand (LH) inner race drive viewed from the end marked by the arrow in the illustration above. Check if the rotation of the clutch is correct before being run-in.
- 5. For indexing use, oil lubrication is recommended.
- 6. Key to be used should be in accordance with JIS B1301-1959
- 7. Thrust load should be supported by other devices, not by the Cam Clutch.
- 8. The bore of the driven member, such as the sprocket on the clutch outer race, should meet H6 or H7 tolerance of the JIS standard.
- When selecting the clutch, see "Information for Selection" on page 73. For lubrication, see "Lubrication and Maintenance" on page 75.

LD SERIES CAM CLUTCH

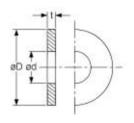
■ MODELS LD 04 TO LD 08

For Light Duty at Low Speed

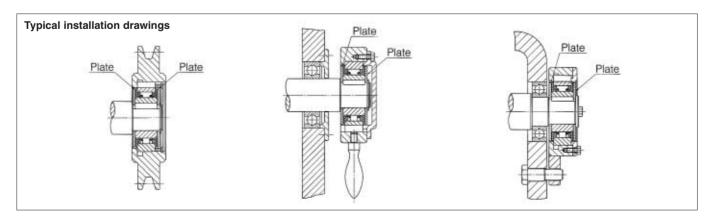
Dimensions and Capacities

Dimensions in mm

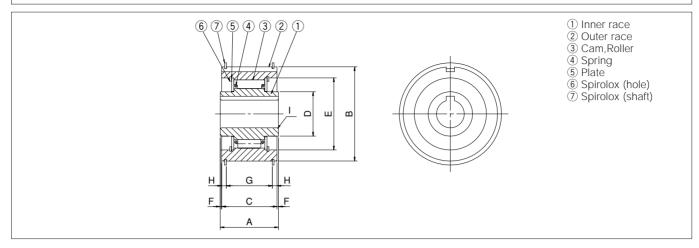
Model	Max. Torque (N·m)	Nominal Overrun- ning Drag (N·m)	Max. Overrunning (r/min) Inner Race	indevina	Max. Radial Load When Overrunning (kgf)		ore Size Key- way	Α	В	С	D	E	Outer Race Keyway	Weight (kg)
LD 04	5.88	0.196	300	100	20	10	4 × 1.5	19.5	23.9	24	47 ^{-0.014} -0.039	40	5 × 3	0.25
LD 05	9.8	0.294	300	100	30	14	5 × 2	19.5	23.9	24	52 -0.017 -0.042	45	5 × 3	0.30
LD 06	19.6	0.294	200	100	50	20	5 × 2	19.5	23.9	24	62 ^{-0.017} -0.042	52	7 × 4	0.40
LD 07	29.4	0.392	200	100	70	25	7 × 3	19.5	23.9	24	72 ^{-0.017} -0.042	62	7 × 4	0.55
LD 08	49	0.49	200	100	80	30	7 × 3	19.5	23.9	24	82 ^{-0.017} -0.042	70	10 × 4.5	0.65


Note: Weaker Spring type "LD---WS" is available upon request.

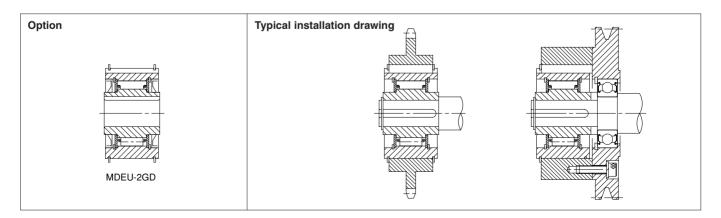
Installation and Usage


- LD Series Cam Clutch is prelubricated with special grease and are ready for use. No additional lubricant is required.
- 2. When installing the clutch on the shaft, press the clutch inner race slightly with a soft hammer to prevent the clutch outer race from slipping away from the inner race.
- 3. Be sure to attach the plate. This prevents the outer race from slipping away from the inner race. See recommended dimensions of the plate listed on the right.

- 4. For lubrication, coat the plate and thrust plate with grease.
- Never apply thrust loads to the clutch. Other devices should be provided to take up thrust loads applied to the clutch.
- 6. Key should be in accordance with JIS B1301-1959.
- 7. The bores of the pulley, sprocket, etc., should have a tolerance of H6 or H7.
- 8. See "Information for Selection" on page 73.

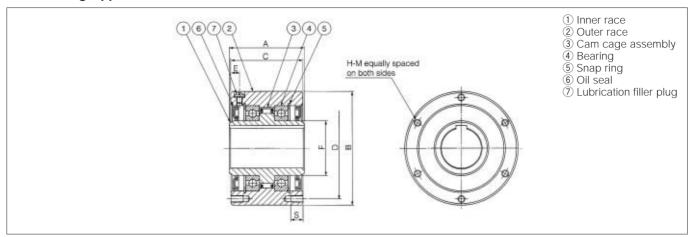

Recommended Plate Dimensions

		Dimen	sions in mm
Model	t	ød	øD
LD 04	2	10	40
LD 05	2	14	45
LD 06	3	20	52
LD 07	3	25	62
LD 08	3	30	70


MDEU SERIES CAM CLUTCH

Dimensions and Capacities

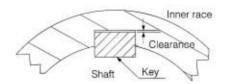
Model	Torque Capacity N·m	Max.Overrunning Speed Inner race r/min	Max. Indexing cycle/min	Max.Radial Load When Overrunning N	Bore Size H7	Inner race Keyway	А	B h7	С	D	E	F	G	Н	I	Keyway Outer race	Weight kg
MDEU15	70	600	100	610	15	5×2.3	39	55	37	25	42	1	30	3.5	0.5	5×3	0.52
MDEU20	150	500	100	910	20	6×2.8	42	68	40	32	52	1	33	3.5	0.5	6×3.5	0.88
MDEU25	230	450	100	1060	25	8×3.3	42	80	40	40	65	1	33	3.5	0.5	8×4	1.1
MDEU30	390	400	100	1400	30	8×3.3	50	90	48	45	72	1	36	6	1	8×4	1.7
MDEU35	460	350	100	1500	35	10×3.3	50	100	48	50	80	1	36	6	1	10×5	2.1
MDEU40	530	350	100	1580	40	12×3.3	50	110	48	55	78	1	36	6	1	12×5	2.7
MDEU45	690	300	100	1770	45	14×3.8	50	120	48	65	88	1	36	6	1	14×5.5	3.2
MDEU50	870	300	100	1880	50	14×3.8	50	130	48	70	95	1	36	6	1	14×5.5	3.8
MDEU55	1100	250	100	2850	55	16×4.3	60	140	58	80	105	1	46	6	1	16×6	5.3
MDEU60	1500	250	100	3060	60	18×4.4	60	150	58	90	115	1	46	6	1	18×7	6.1
MDEU70	1900	200	100	3470	70	20×4.9	60	170	58	100	125	1	46	6	1	20×7.5	7.9
MDEU80	2300	200	100	3600	80	22×5.4	60	190	58	110	140	1	46	6	1	22×9	9.7

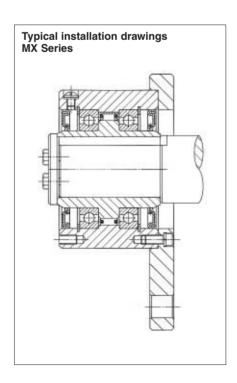

- 1. The bores of the pulley, sprocket, etc., should have a tolerance of H6 or H7.
- 2. Built in roller type bearing, due to the structure of cam and roller.
- 3. When installing the Cam Clutch on the shaft, press the clutch inner race slightly.
- Never apply thrust loads to the Cam Clutch. Other devices should be provided to take up thrust loads applied to the Cam Clutch.
- 5. In case of large radial loads applied to the Cam Clutch like installing with pulley, another bearing should be prepared so that the point of the loads can be hanged on the bearing.
- 6. Key should be in accordance with ISO R773 (DIN 6885.1). Note that the keyway dimensions of outer race is not in accordance with the keyway dimensions which mentioned in ISO R773 (DIN 6885.1).
- 7. See "Information for lubrication and maintenance" on page 75.
- 8. In case of using the Cam Clutch in a dusty atmosphere, or preventing the Cam Clutch from grease leakage, MDEU-2GD (Cam Clutch with dust seal type) is available as option. Note that the maximum overrunning speed of Cam Clutch with dust seal type is approximately 80% compared with that of the standard model.

MX SERIES CAM CLUTCH

■ MODELS MX 22 TO MX 70

For Indexing Applications


Dimensions and Capacities

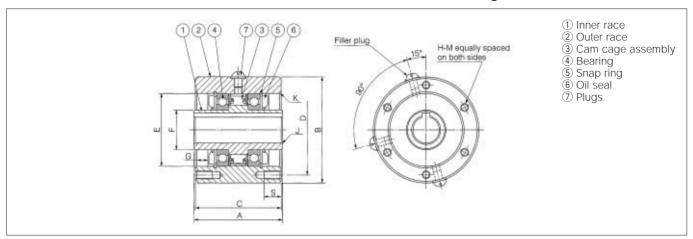

Dimensions in mm

	_Max.	Max.	Stock B	ore Size	IJ . I B I . I -						H-M No. of	Lubrication	Inertia	Overrun.	Oil	Weight	
Model	Torque (N·m)	(cycle/min.)	Dia. (H7)	Key- way	Α	(h7)	С	D	E F		S	Tapped Holes × Size × Pitch	Filler Plug Size x Pitch	Inner Race (kg·m²)	Drag (N·m)	(cc)	(kg)
MX22	78.4	1,200	22	6 × 2.8	80	95	77	80	12	35	16	4 × M 8 × P1.25	M6 × P1.0	0.000150	0.470	80	3.3
MX35	235	1,200	35	10×3.3	90	125	87	110	12	50	16	4 × M 8 × P1.25	M6 × P1.0	0.000625	1.36	110	6.4
MX50	441	1,200	50	14 × 3.8	100	155	97	140	14	70	16	6 × M 8 × P1.25	M8 × P1.25	0.00275	2.68	190	10.6
MX70	784	1,200	70	20 × 4.9	127	200	124	180	15	100	20	6 × M10 × P1.5	M8 × P1.25	0.0130	5.15	340	21.3

Note: Above torque is based on 108 times load cycles.

- For installation, insert the clutch into the hub bore of a pulley, a gear, or a torque arm and screw the bolts (high tension) into the tapped holes in the end face of the clutch. See illustration on the right.
- A press fit is required for MX Series clutches for indexing applications, but do not exceed 0.025 mm when press fitting.
- Adjust the side of the key to fit the keyway tightly, but allow a clearance between the top of key and keyway.
- 4. When mounting the clutch on a shaft, apply pressure to the clutch inner race end, but never to the outer race.
- 5. Proper selection of the Cam Clutch provides accurate indexing performance. A braking device and a backstopping device may also be required for more accurate performance.
- 6. The tolerance of the hub bore should be H6 or H7.

- See "Information for Selection" on page 73.
- See "Lubrication and Maintenance" on page 75.


MI-S SERIES CAM CLUTCH

■ MODELS MI 20S AND MI 30S

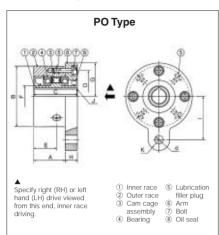
For Special Applications

Features:

- 1. Specially treated cams are used to achieve better wear resistance.
- 2. Ideal for use as a feeding drive for bag-making machines or coiling machines.

Dimensions and Capacities

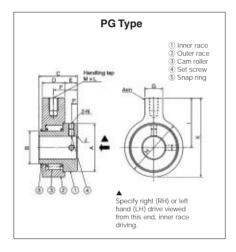
Dimor	nsions	in	mm


Model T	_Max.	Max.	Drag		Bore			_				Bore			Тарре	d Hole	Lubri-	Weight
	Torque (N·m)	(cycle/min)	Torque (N·m)	Dia. (H7)	Keyway	Cham- fer J	Α	С	В	F	E(M6)	G	K	D	S	(H-M)	cant (cc)	Weight (kg)
MI 20S	43.1	300	0.294	20	6 × 2.8	1.0	67	65	80	30	20	8.0	1.0	68	13	6-M6 × P1.0	45	1.9
MI 30S	196	300	1.08	30	10 × 3.3	1.0	82	80	100	45	30	5.5	1.0	88	16	6-M6 × P1.25	100	4.0

- 1. When mounting sprockets or gears to the outer race, use the outer race inner dimension (dimension E) to make a centering flange on the sprocket or gear. Then attach firmly with bolts of tensile strength 10.9 or greater to the tapped holes in the outer race. Recommended tolerance between mounted gear and centering flange is f7.
- 2. The recommended shaft tolerance is h6 or h7.
- 3. Always use a parallel key, and do not use a tapered key. A parallel key meeting ISO R773 (DIN 6885.1) is recommended. Make sure that there is no lateral play between the key and keyways. Install an end plate on the face of the inner race
- 4. When inserting the shaft, apply pressure only to the face of the inner race only.
- 5. See "Lubrication and Maintenance" on page 75.

PO, PG, PS SERIES CAM CLUTCH

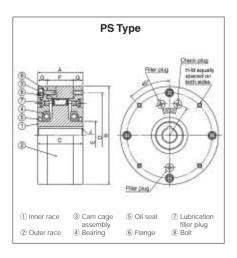
■ MODELS PO 20 TO P0 50/PG 15 TO PG 35/PS 20 TO PS 40


For Printing Machines

Dimen	Dimensions and Capacities of PO series													D	Dimensions in mm				
	Max.	Max.	Drag		Bore	:										Plu	ıgs	Lubri-	Weight
Model		Indexing (cycle/min)	Torque (N·m)	Dia. (H7)	Key- way	Cham- fer J	С	F	А	Н	В	G	НВ	ı	K	Ε	Size	cant (cc)	(kg)
PO 20	44.1	150	0.294	20	5 x 2	1.0	61	30	44	17	84	46.5	12	60	15	32	M6	50	2.2
PO 30	23.5	150	0.784	30	7 × 3	1.0	81	55	63	18	110	58	14	80	18	42	M6	95	5.0
PO 40	441	150	1.57	40	10 × 3.5	1.5	90	75	70	20	138	72.5	16	100	20	47	M6	150	9.0
PO 50	441	150	1.57	50	12 × 3.5	1.5	90	75	70	20	138	72.5	16	100	20	47	M6	150	8.5

Characteristics:

- 1. PO Series are for various types of printing machines and can be used to drive ink rolls.
- 2. A swing arm should be used with these Cam Clutches.
- 3. Specify LH or RH drive when ordering.



Dimensions and	Capacities	of	PG	series
----------------	------------	----	----	--------

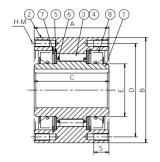
Dimen	Dimensions and Capacities of PG series Dimensions in mm														mm				
	Max.	Max.	Max.	Drag			ore										Tapp	ed Hole	Weight
Model	Torque (N·m)	Indexing (cycle/min)	Overrun- ning Speed	Torque (N·m)	Dia. (H7)	Set P	Bolt N	Cham- fer J	С	E	А	В	I	K	I	GxD	F	$M \times \ell$	(1, ~)
PG 15	19.6	100	100	0.196	15	5.5	M5	0.8	40	11	40	23.8	50	70	45	16 × 25	23.5	M8 (P=1.25) × 12	0.5
PG 25	39.2	100	100	0.294	25	6.5	M6	0.8	43	14	53	36.7	65	87.5	55	20 × 25	26.5	M10 (P=1.5) × 14	0.8
PG 35	58.8	100	100	0.49	35	6.5	M6	0.8	43	14	62	45.3	75	102.5	65	20 × 25	26.5	M12 (P=1.75) × 16	1.1

Characteristics:

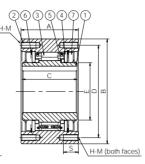
- 1. PG Series are ideal for various types of printing machines and manual drives of ink rolls.
- 2. A handle is installed directly on the clutch outer race.
- 3. Maintenance free.
- 4. Specify LH or RH drive when ordering.

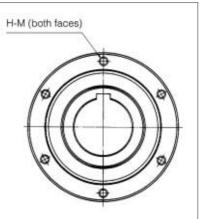
umen	Dimensions and Capacities of PS series												Dimensions in mm							
	Max.	Max.	Drag		Bore									Bore			Lubri-	Weight		
Model		Indexing (cycle/min)	Torque (N·m)	Dia. (H7)	Key- way	Cham- fer J	Α	C	F	В	E	D	G	(H.M)	Н	Size	cant (cc)	(kg)		
PS 20	196	150	1.18	20	6 × 2.8	1.0	64	64	38	140	40	122	13	4-M6 × 1.0	R46	M6	100	6.5		
PS 30	392	150	1.67	30	8 × 3.3	1.0	72	72	40	180	70	162	16	4-M6 × 1.0	R65	M6	160	12.6		
PS 40	392	150	1.67	40	12×3.3	1.5	72	72	40	180	70	162	16	4-M6 × 1.0	R65	M6	160	12.3		

Characteristics:


- 1. Used for high-accuracy indexing applications.
- 2. A swing arm can be installed on the outer race.

BS SERIES CAM CLUTCH


■ MODELS BS30 TO BS450


For Reverse Rotation Prevention on Conveyors

BS30 to 135

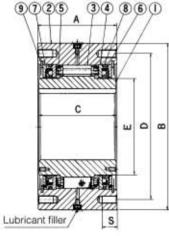
H-M (both faces)

BS30 to BS50

- ① Inner race
- ② Outer race 3 Cam
- 4 Roller
- S Spacer plateSpringSpiroloxOil seal

BS65 to BS75

- 1 Inner race
- ② Outer race
- 3 Cam
- 4 Roller
- (5) Spring
- 6 Spacer plate
- 7 Thrust metal
- ® Oil seal
- Spirolox


BS85 to BS135

- 1 Inner race
- ② Outer race
- 3 Cam
- § Spacer plate
- 5 Thrust metal
- 6 Spirolox
- 7 Oil seal


H-M (both faces)

Shaft Diameter	Chamfer
Under 50 mm	1.5 C
50 to 125 mm	2.0 C
125 to 285 mm	3.0 C

BS160 to 450

BS160 to BS220

H-IVI (both faces)	
Shaft Diameter	Chamfer
50 to 125 mm	2.0 C
125 to 285 mm	3.0 C

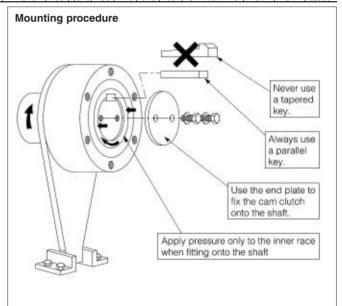
BS250 to BS450

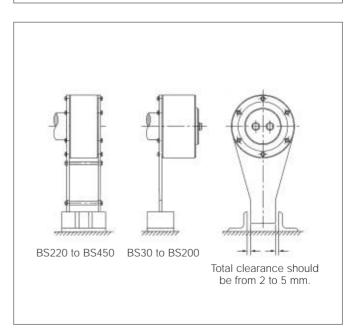
H-M (both faces)

Shaft Diameter	Chamfer
125 to 285 mm	3.0 C
Over 285 mm	5.0 C

- 1 Inner race
- 2 Outer race
- 3 Cam and cage
- 4 Seal stopper 5 Thrust metal
- 6 Oil seal
- Dust protective plate
- ® O-ring
- 9 Snap ring

Dimensions and Capacities

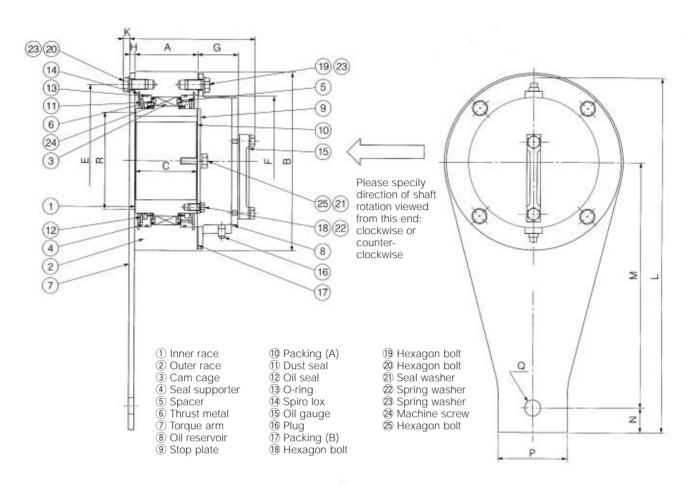

Dimensions in mm

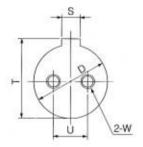

	Max.		Stock Finishe	ed Bore (mm)	Max.	Nominal								H-M	Grease	O'ty of	
Model	Torque (N·m)	Bore Dia. Range	Keyway JISB1301-1959	Keyway ISO Standard (ISO R773)	Overrun- ning (r/min) Inner Race	Overrun- ning Drag (N·m)	Α	В	С	D	Ε	S	No. of Tapped Holes × Size × Pitch	Filler Hole	Grease (g)	Weight (kg)	
BS 30	294	20 to 30	30	30	350	0.588	64	90	64	80	45	13	4×M6×P1.0	_	-	2.1	
BS 50	784	30 to 50	45,50	45,50	300	0.980	67	125	67	110	70	16	4×M8×P1.25	-	_	4.0	
BS 65	1,570	40 to 65	40,45,50,55,60,65	40,45,50,55,60,65	340	3.92	90	160	85	140	90	20	6×M10×P1.5	-	-	11.5	
BS 75	2,450	50 to 75	60,65,70,75	60,65,70,75	300	5.88	90	170	85	150	100	20	6×M10×P1.5	-	_	13.1	
BS 85	5,880	60 to 85	70,75,80,85	70,75,80,85	300	7.84	115	210	110	185	115	30	6×M12×P1.75	-	_	24.7	
BS 95	7,840	70 to 95	80,85,90,95	80,85,90,95	250	9.80	115	230	110	200	130	30	6×M14×P2.0	-	-	29.4	
BS 110	10,800	80 to 110	85,95,100,105,110	85,95,100,105,110	250	14.7	115	270	110	220	150	30	6×M16×P2.0	-	_	34.2	
BS 135	15,700	90 to 135	_	-	200	19.6	135	320	130	280	180	30	8×M16×P2.0	-	-	68.0	
BS 160	24,500	100 to 160	_	-	100	34.3	135	360	130	315	220	40	10×M20×P2.5	PT 1/4	300	85.6	
BS 200	37,200	100 to 200	-	-	100	44.1	150	430	145	380	265	40	8×M22×P2.5	PT 1/4	380	140.0	
BS 220	49,000	150 to 220	_	-	80	73.5	235	500	230	420	290	40	16×M20×P2.5	PT 1/4	1,100	263.5	
BS 250	88,200	180 to 250	-	-	50	93.1	295	600	290	530	330	50	16×M24×P3.0	PT 1/4	3,200	580.0	
BS 270	123,000	200 to 270	-	-	50	98.0	295	650	290	575	370	50	16×M24×P3.0	PT 1/4	3,600	620	
BS 300	176,000	230 to 300	_	-	50	108	295	780	290	690	470	60	16×M30×P3.5	PT 1/4	4,500	850	
BS 335	265,000	250 to 335	-	-	50	137	305	850	320	750	495	70	16×M36×P4.0	PT 1/4	4,800	1,135	
BS 350		250 to 350	-	-	50	157	320	930		815	535	70	16×M36×P4.0	PT 1/4	5,200	1,605	
BS 425		325 to 425	_	-	50	216	440	1,030	450	940	635	70	18×M36×P4.0	Oil	Oil	2,450	
BS 450	686,000	350 to 450	-	_	50	245	450	1,090	480	990	645	80	18×M42×P4.5	Oil	Oil	2,820	

- 1. For prevention of rotation in the reverse direction at slow speeds on conveyors or pumps.
- 2. Lubrication method and dust prevention features:

	BS30 to BS135	BS160 to BS450
Lubrication specifications	Maintenance-free type, internally lubricated.	Grease lubricated type, change the grease once or twice every year
Dust prevention	Dust seal Double-lip oil seal	Dust plate Double-lip oil seal

- 3. Before installation, verify that the direction of rotation of the inner race of the BS Cam Clutch (shown by the arrow on the inner race) is the same as the direction of rotation of the conveyor.
- 4. Securely install the torque arm to the BS Cam Clutch using bolts of strength 10.9 or higher. Make sure that the contact between the surface of the torque arm and the side of the outer race is level and free of dust.
- 5. Recommended shaft tolerance is h7 or h8.
- 6. When inserting the BS Cam Clutch on the shaft, apply pressure only on the inner race. Do not tap the inner race directly with a hammer or exert any force upon the outer race, dust seal, or dust plate.
- 7. Always use a parallel key for installation onto the shaft and then fix the BS Cam Clutch to the shaft with the end plate. Never use a tapered key.
- 8. When installing models above BS160 (grease lubricated types), place one of the four oil plugs in the direct bottom location. This will allow for easy drainage of the grease for cleaning.
- 9. While the shaft is rotating, the end of the torque arm will swing to some extent in the direction of rotation. Support the torque arm end only in the direction of rotation, but be sure to allow it a certain amount of free swing. If the torque arm end is fixed securely (see installation diagram), the inside of the clutch becomes twisted, and this can result in damage to the components.
- 10. For models BS30 to BS200, a single torque arm on one side is sufficient, but for models 220 to BS450, use two torque arms, one on each side. Install the torque arms evenly so the force is transmitted through the center of the clutch.
- 11. Torque arms for the BS Cam Clutch are standardized.
- 12. See "Lubrication and Maintenance" on page 75.





BS-R SERIES CAM CLUTCH

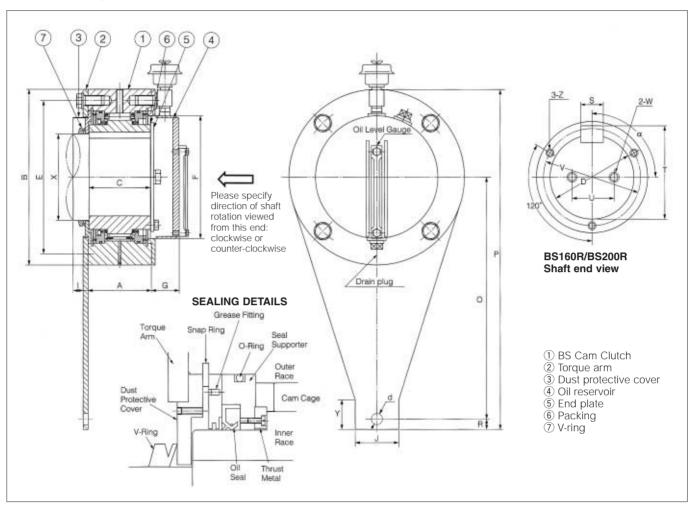
■ MODELS BS65R TO BS135R

Oil Reservoir Type

When ordering the Oil Reservoir Type, please specify using the list below.

D	Bore Dia. (mm)	W	Size of Tapped Holes
S	Keyway Width (mm)	α	Angle: Relation between Center of Keyway and Tapped Holes (degree)
Т	Keyway Height (mm)	X	Dia. of Shaft Shoulder (mm)
U	Distance between Tapped Holes (mm)	CW. CCW.	Direction of Shaft Rotation

- Please send your order for the Oil Reservoir together with that for the BS Cam Clutch.
- Torque Arms are optional. The arm shown above is only for your reference. If a Torque Arm is necessary, please specify this in your order.


Dimensions and Capacities

Dimensions	Dimensions and Capacities Dimensions in mm																	
Model	Allowable Torque (N·m)	Shaft Diameter Range	Inner Race Max. Overrun. (r/min)	А	В	С	E	F	G	Н	J	K	L	М	N	Р	О	R
BS 65R	1,570	40 to 65	200	90	160	85	140	115	50	6	171.5	9.5	306	210	16	50	13.5	90
BS 75R	2,450	50 to 75	180	90	170	85	150	125	50	6	171.5	9.5	354	250	19	65	16.5	100
BS 85R	5,880	60 to 85	180	115	210	110	185	140	60	9	211	11	434	300	29	95	20.5	115
BS 95R	7,840	70 to 95	170	115	230	110	200	160	60	9	214	12.5	497	350	32	105	20.5	130
BS 110R	10,800	80 to 110	170	115	270	110	220	180	60	12	217	14	560	385	40	110	26	140
BS 135R	15,700	90 to 135	120	135	320	130	280	230	60	12	237	14	666	470	36	120	26	180

		ng Bolt Quantity	Stop Plate Bolt	Weight	Oil
Model	Torque Arm Side	Oil Reserve Side	Size and Quantity	(kg)	Capacity (cc)
BS 65R	M10 × 25 – 6	M10 × 20 – 3	M6 × 20 – 3 + 2	11.5	250
BS 75R	M10 × 25 – 6	M10 × 20 – 3	M6 × 20 – 3 + 2	13.1	300
BS 85R	M12 × 30 – 6	M12 × 25 – 3	M6 × 25 – 3 + 2	24.7	450
BS 95R	M14 × 35 – 6	M14 × 30 – 3	M6 × 25 – 3 + 2	29.4	600
BS 110R	M16 × 40 – 6	M16 × 35 – 3	M8 × 25 – 3 + 2	34.2	750
BS 135R	M16 × 35 – 8	M16 × 35 – 4	$M10 \times 30 - 3 + 2$	68.0	1300

■ MODELS BS 160R AND BS200R

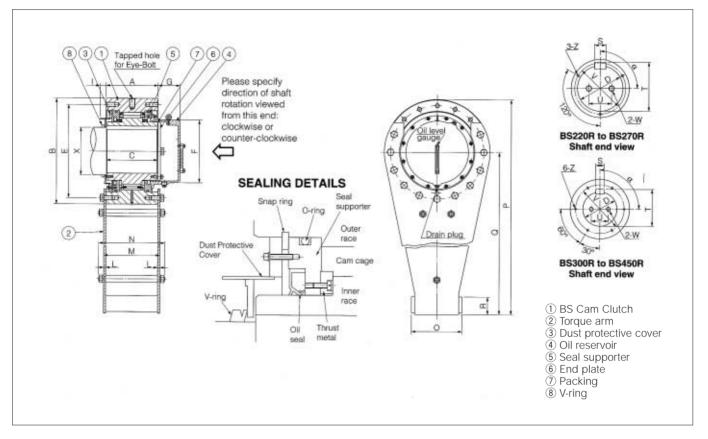
Oil Reservoir Type

When ordering the Oil Reservoir Type, please specify using the list below.

D	Bore Dia. (mm)	W	Size of Tapped Holes
S	Keyway Width (mm)	α	Angle: Relation between Center of Keyway and Tapped Holes (degree)
Т	Keyway Height (mm)	Х	Dia. of Shaft Shoulder (mm)
U	Distance between Tapped Holes (mm)	CW. CCW.	Direction of Shaft Rotation

- Please send your order for the Oil Reservoir together with that for the BS Cam Clutch.
- Torque Arms are optional. The arm shown above is only for your reference.
 If a Torque Arm is necessary, please specify this in your order.

Dimensions and Capacities


Model							Dir	men	sion	in n	nm								s for ion size	Q'ty of	Approx. Weight			
iviodei	Torque (N·m)	Range (mm)	Overrun. (r/min)	А	В	С	Е	F	G	L	ı	J	R	Р	Q	L	М	N	V	Z	For Torque Arm	For Oil Reservoir	Oil (cc)	w/o T.A. (kg)
BS 160R	24,500	100 to 160	110	135	360	130	315	255	60	19	16	120	65	792	612	-	-	-	190	M10	M20×50ℓ×10	M20×40 ℓ×5	1,300	95
BS 200R	37,240	100 to 200	110	150	430	145	380	310	60	19	21	130	70	838	623	-	-	-	235	M12	M22×50ℓ× 8	M22×40ℓ×4	1,900	155

Notes:1. BS Cam Clutch can be bored according to your specifications, but please specify the bore diameter with tolerance and keyway dimensions. If the tolerance and keyway are not specified, a tolerance of JIS H8 for the bore (JISB0401-1965) and keyway as per JIS (JISB1301-1959) Class II for parallel keys will be applied.

2. To fix the torque arm, follow the installation instructions given on page 49.

■ MODELS BS220R TO BS450R

Oil Reservoir Type

When ordering the Oil Reservoir Type, please specify using the list below.

D	Bore Dia. (mm)	W	Size of Tapped Holes
S	Keyway Width (mm)	α	Angle: Relation between Center of Keyway and Tapped Holes (degree)
Т	Keyway Height (mm)	Х	Dia. of Shaft Shoulder (mm)
U	Distance between Tapped Holes (mm)	CW. CCW.	Direction of Shaft Rotation

- Please send your order for the Oil Reservoir together with that for the BS Cam Clutch.
- Torque Arms are optional. The arm shown above is only for your reference.
 If a Torque Arm is necessary, please specify this in your order.

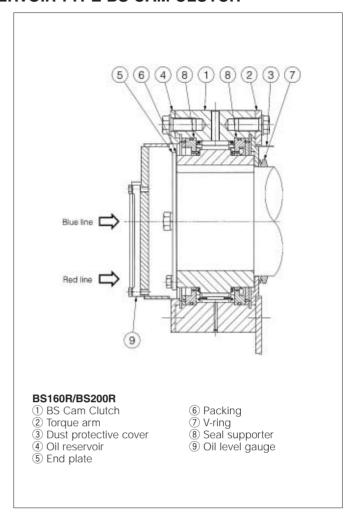
Dimensions and Capacities

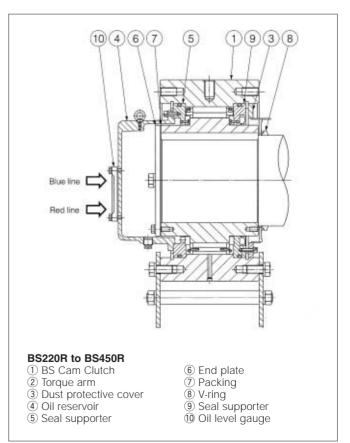
Model	Max. Torque	Inner Race Max.							Dime	nsio	n in	mm								olts for allation	Q'ty of Oil	Approx. Weight	
	(N·m)	Range (mm)	Overrun. (r/min)	А	В	С	Ε	F	G	1	L	М	Ν	0	Р	Q	R	٧	Z	size x le	ngth × pcs.	(cc)	T.A. (kg)
BS 220R	49,000	150 to 220	105	235	500	230	420	300	95	35	12	259	311	238	1055	820	80	255	M12	M20 ×	55ℓ × 22	3,400	310
BS 250R	88,200	180 to 250	90	295	600	290	530	355	125	35	12	319	375	288	1300	1000	100	290	M14	$M24 \times$	$55\ell \times 22$	8,200	637
BS 270R	122,500	200 to 270	80	295	650	290	575	395	130	40	12	319	375	298	1425	1100	110	320	M14	$M24 \times$	$55\ell \times 22$	10,000	660
BS 300R	176,400	230 to 300	80	295	780	290	690	495	130	45	19	333	395	356	1690	1300	135	385	M14	M30 ×	70l × 22	15,000	1,050
BS 335R	264,600	250 to 335	75	305	850	320	750	525	135	60	19	343	405	386	1925	1500	135	415	M16	M36 ×	$85 \ell \times 22$	16,000	1,210
BS 350R	313,600	250 to 350	75	320	930	360	815	565	135	71	19	358	430	414	2065	1600	135	442	M16	M36 ×	$85 \ell \times 22$	18,000	1,710
BS 425R	509,600	325 to 425	55	440	1,030	450	940	680	170	70	22	484	570	474	2315	1800	165	530	M20	M36 ×	85ℓ×26	32,000	2,580
BS 450R	686,000	350 to 450	55	450	1,090	480	990	690	180	80	22	494	580	526	2545	2000	165	550	M20	M42 × 1	100ℓ×26	35,000	2,930

Notes:1. BS Cam Clutch can be bored according to your specifications, but please specify the bore diameter with tolerance and keyway dimensions. If the tolerance and keyway are not specified, a tolerance of JIS H8 for the bore (JISB0401-1965) and keyway as per JIS (JISB1301-1959) Class II for parallel keys will be applied.

2. To fix the torque arm, follow the installation instructions given on page 49.

■ INSTALLATION PROCEDURE OF OIL RESERVOIR TYPE BS CAM CLUTCH


Pre-Installation


- 1. The oil reservoir and the end plate are bolted to the BS Cam Clutch when packing to prevent dust from entering during transportation. Carefully detach them from the clutch.
 - To prevent dust from entering the clutch during installation, we recommend that the BS Cam Clutch be put on clean paper when being handled.
- 2a. For models BS160 and BS200R:
 Remove the dust cover from the clutch, and apply grease to the seal supporter to fill the space between the seal supporter and the dust cover.
- 2b. For models BS220R through BS450R:

 Detach and separate the dust cover from the clutch after loosening the bolts. Apply grease to the seal supporter to fill the space between the seal supporter and the dust cover.
- 3. Attach the dust cover to the clutch.
- 4. Check that the direction of rotation of the conveyor shaft is the same as that of the free-wheeling side of the Cam Clutch inner race viewed from the oil reservoir side. The direction of the Cam Clutch freewheeling is shown by the arrow mark on the inner race end of the Cam Clutch.
- 5. Attach the torque arm to the clutch using bolts. The torque arm for models BS250 through BS450 can be attached after mounting the clutch on the shaft, if there is enough open space around the conveyor shaft end. For more information on installing a torque arm, see "Installation and Usage" on page 44.

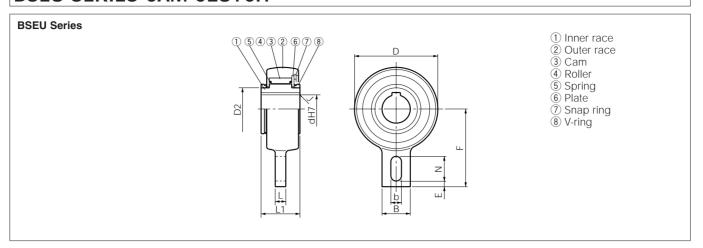
Installation

- Set the V-ring on the shaft shoulder. Mount the clutch on the shaft. Apply pressure only on the inner race to slide the clutch to the shaft shoulder. DO NOT APPLY PRESSURE TO THE CLUTCH OUTER RACE OR THE SEAL SUPPORTER. For securing the clutch, use only a parallel square key and ensure that there is clearance between the key ceiling and keyway. DO NOT USE A TAPERED KEY. Please see "Installation and Usage" on page 44.
- Attach the end plate with the packing to the shaft using the bolts and apply sealing paste. ALWAYS USE THE SEAL WASHERS WITH THE BOLTS, otherwise oil leakage may occur.
- 4. After cleaning the inside of the oil reservoir, apply the sealing paste on the connecting surface of the oil reservoir. For models BS160R and BS200R, attach the oil reservoir to the outer race end with the bolts, placing the oil level gauge at the correct position as shown. For models BS220R through BS450R, attach the oil reservoir to the seal supporter using the bolts, placing the oil level gauge at the correct position as shown.
- 5. Push the V-ring to contact with the dust cover for maximum protection from dust.

■ TORQUE ARM (OPTIONAL)

Torque Arm Dimension Table for BS 30 and BS 50

Torque Arm Nos.	BS30 TA-E	BS 50TA								Dimensions in mm
Torque Arm No.	А	В	С	D	E	F	Н	J	K-L	Approx. Weight (kg)
BS 30TA	168	130	38	80	55	75	6	45	4-6.6	0.5
BS 50TA	230	180	50	110	80	100	6	45	4-9	0.8


Torque Arm Dimension Table for BS 65 to BS 200 and BS 65R to BS 200R

Torque Arm Nos.	BS 65TA	A-BS 200	TA									Dimensions in mm
Torque Arm No.	А	В	С	D	E	F	G	I	К	L	H-M	Approx. Weight (kg)
BS 65TA	306	210	80	140	90	16	50	30	13.5	6	6-11	1.7
BS 75TA	354	250	85	150	100	19	65	35	16.5	6	6-11	2.3
BS 85TA	434	300	105	185	115	29	95	45	20.5	9	6-14	5.0
BS 95TA	497	350	115	200	130	32	105	55	20.5	9	6-16	6.2
BS 110TA	560	385	135	220	140	40	110	60	26	12	6-18	10.5
BS 135TA	666	470	160	280	180	35	120	65	26	12	8-18	14.8
BS 160TA	792	580	180	315	260	32	120	65	31	19	10-22	27.4
BS 200TA	838	580	215	380	310	43	130	70	41	19	8-24	34.2

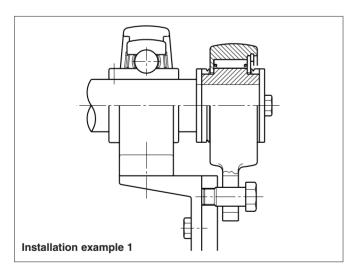
Torque Arm Dimension Table for BS 220 to BS 450 and BS 220R to BS 450R

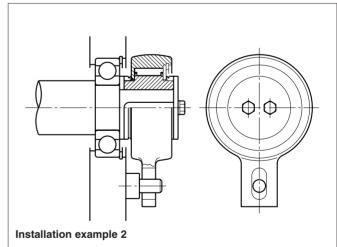
Torque Arm Nos.	BS 22	OTA-B	S 450	TA													Dimensions in mm
Torque Arm No.	А	В	С	D	E	G	Н	I	J	K	L	N	Р	Q	R	Z-W	Approx. Weight (kg)
BS 220TA	950	820	130	420	176	235	80	70	10	235	259	12	238	220	311	11-22	58
BS 250TA	1,170	1,000	170	530	214	300	100	90	10	295	319	12	288	250	375	11-26	95
BS 270TA	1,270	1,100	170	575	235	325	110	100	10	295	319	12	298	260	375	11-26	110
BS 300TA	1,480	1,300	180	690	285	390	135	120	15	295	333	19	356	300	395	11-32	200
BS 335TA	1,730	1,500	230	750	307	425	135	120	15	305	343	19	386	330	405	11-39	270
BS 350TA	1,850	1,600	250	815	328	465	135	120	15	320	358	19	414	350	430	11-39	330
BS 425TA	2,110	1,800	310	940	380	515	165	150	15	440	484	22	474	410	570	13-39	480
BS 450TA	2,320	2,000	320	990	400	545	165	150	15	450	494	22	450	450	580	13-45	560

BSEU SERIES CAM CLUTCH

Dimensions and Capacities

	Stock Bo	ore Size	Torque	Max.	D	D2	L1		В	F	b	N	Е	J	Weight
Model	Dia	Keyway	Capacity	Overrun.	D	D2	LI	_	Ь	'	b	IN	_		weign
	H7	Reyway	N∙m	r/min										Chamfer	kg
BSEU25-20	20	6 × 2.8	216	500	83	42	35	12	40	90	15	35	5	1.5	1.00
BSEU25-25	25	8 × 3.3	216	500	83	42	35	12	40	90	15	35	5	1.5	0.95
BSEU40-20	20	6 × 2.8	1,440	450	118	60	55	15	40	110	15	35	8	1.5	3.73
BSEU40-25	25	8 × 3.3	1,440	450	118	60	55	15	40	110	15	35	8	1.5	3.65
BSEU40-30	30	8 × 3.3	1,440	450	118	60	55	15	40	110	15	35	8	1.5	3.56
BSEU40-35	35	10 × 3.3	1,440	450	118	60	55	15	40	110	15	35	8	1.5	3.45
BSEU40-40	40	12 × 3.3	1,440	450	118	60	55	15	40	110	15	35	8	1.5	3.32
BSEU70-45	45	14 × 3.8	3,140	350	165	90	59	20	80	140	18	35	10	1.5	7.44
BSEU70-50	50	14 × 3.8	3,140	350	165	90	59	20	80	140	18	35	10	1.5	7.28
BSEU70-55	55	16 × 4.3	3,140	350	165	90	59	20	80	140	18	35	10	2.0	7.09
BSEU70-60	60	18 × 4.4	3,140	350	165	90	59	20	80	140	18	35	10	2.0	6.88
BSEU70-65	65	18 × 4.4	3,140	350	165	90	59	20	80	140	18	35	10	2.0	6.68
BSEU70-70	70	20 × 4.9	3,140	350	165	90	59	20	80	140	18	35	10	2.0	6.43
BSEU90-75	75	20 × 4.9	4,700	250	190	120	63	20	80	165	20	40	15	2.0	10.10
BSEU90-80	80	22 × 5.4	4,700	250	190	120	63	20	80	165	20	40	15	2.0	9.82
BSEU90-85	85	22 × 5.4	4,700	250	190	120	63	20	80	165	20	40	15	2.0	9.57
BSEU90-90	90	25 × 5.4	4,700	250	190	120	63	20	80	165	20	40	15	2.0	9.23


Explanation 1

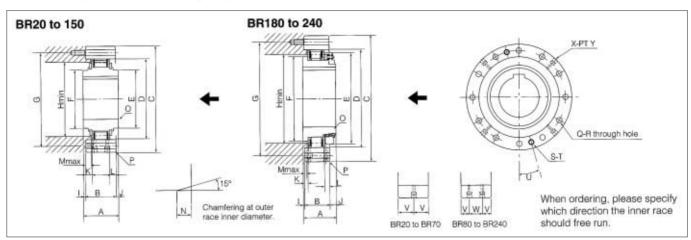

The Tsubaki Backstop Cam Clutch, a one-way clutch with the safest reverse rotation prevention qualities available, was manufactured mainly for installation on the low speed shaft of inclined conveyors or bucket elevators. The backstop cam clutch as well as all other Tsubaki Cam clutches is a one-way, sprag type clutch. Compared to other one-way clutches (ratchet or roller ramp clutch) similar in size, overheating during times when the motor is idling is significantly lower. This helps maintain superb lubrication qualities thereby improving the wear life of the clutch. Extended fatigue life is also obtainable due to the clutch's large torque capacity. Both the European style BSEU series, as well as the BS series cam clutch which boasts thirty years of reputable performance since its introduction, can be used as reverse rotation prevention cam clutches for an array of conveyor sizes. Applicable shaft sizes range from $\emptyset 20 \sim \emptyset 450$ mm and torque range from $216 \sim 686,000$ N·m.

Installation and usage for BSEU series

- 1. We recommend using a shaft tolerance of h7 or h8 for Cam Clutch installation.
- 2. ISO R773 (DIN6885.1) keyway is standard.
- 3. Before installation, verify that the direction of rotation of the inner race of the Cam Clutch (shown by the arrow on the inner race) is the same as the direction of rotation of the conveyor.
- 4. When inserting the Cam Clutch on the shaft, apply pressure only on the surface of the inner race with a soft hammer. Never strike the Cam Clutch with a steel hammer or apply unnecessary impact loads.
- 5. Always use a parallel key for installation onto the shaft and then fix the Cam Clutch to the shaft with the end plate. Never use a tapered key. Allow for a clearance between the top of the clutch keyway and the top of the key for pressure ventilation. A pressure ventilation hole is provided on the keyway of the clutch's inner race.

- 6. Use the frame or a pin to eliminate outer race rotation.
- 7. Set a 0.5 mm degree clearance between the torque arm and the frame (torque arm stopper) or the long slit in the torque arm and the pin. If the torque arm is rigidly mounted, it will apply a load to the Cam Clutch which may eventually damage it.
- 8. The Cam Clutch is pre-packed with low temperature grease before shipment and is ready for installation and operation. No lubrication maintenance is required. The ambient operational temperature range is –40° to 50°C. However, the maximum temperature should be determined depending on the number of shaft revolutions. Further, if the number of shaft revolutions is low, a higher ambient operational temperature range is allowable. Consult with Tsubaki for more details.

Explanation 2

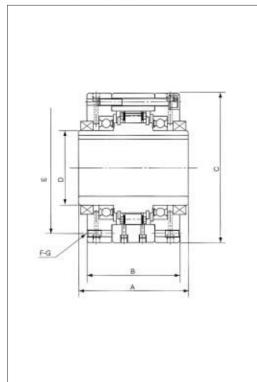

Other Possible Applications:

BSEU Series Cam Clutches may also be used for low frequency indexing applications. A maximum indexing frequency of no more than 50 cycles/min. and a safety ratio of 2.5 times higher than the working torque are required. Be sure that the stress applied to the torque arm functions at a right angle in relation to the shaft direction. If the stress that is applied to the torque arm is set diagonally, the inner parts of the clutch will entangle causing damage and drastically reduce the operational life of the Cam Clutch.

BR SERIES CAM CLUTCH

■ MODELS BR20 TO BR240

For Backstop and Overrunning Applications


Dimension	(Open T	ype)														Dime	ensior	ns in mm
Model	Dia. (H7)	Shaft Hole Keyway	e Chamfer O	Inner Race Width A	Outer Race Width B	Outer Dia. C (h7)	Outer Race Inner Dia. D (h7)	E	F	Moun PCD G	NoDia. Q-R	Pulloff Holes NoSize S-T	H min	ı	J	K	L	M max
BR 20	20	6 × 2.8	0.5	35	35	90	66	40.7	40.7	78	6- 6.6	2-M 6	53	0	0	5	5	4.0
BR 25	25	8 × 3.3	0.5	35	35	95	70	44.7	44.7	82	6- 6.6	2-M 6	58	0	0	5	5	4.0
BR 30	30	8 × 3.3	1.0	35	35	100	75	49.7	49.7	87	6- 6.6	2-M 6	64	0	0	5	5	4.0
BR 35	35	10 × 3.3	1.0	35	35	110	80	54.7	54.7	96	8- 6.6	2-M 6	70	0	0	5	5	4.0
BR 40	40	12 × 3.3	1.0	35	35	125	90	64.7	64.7	108	8- 9.0	2-M 8	81	0	0	5	5	4.0
BR 45	45	14 × 3.8	1.0	35	35	130	95	69.7	69.7	112	8- 9.0	2-M 8	86	0	0	5	5	4.0
BR 50	50	14 × 3.8	1.0	40	40	150	110	84.7	84.7	132	8- 9.0	2-M 8	103	0	0	7.5	7.5	6.5
BR 60	60	18 × 4.4	1.5	60	50	175	125	80	80	155	8-11.0	2-M10	110	5	5	7	7	6.0
BR 70	71	20 × 4.9	1.5	60	50	190	140	95	95	165	12-11.0	2-M10	125	5	5	7	7	6.0
BR 80	80	22 × 5.4	1.5	70	60	210	160	115	115	185	12-11.0	2-M10	148	5	5	12	12	11.0
BR 90	90	25 × 5.4	1.5	80	70	230	180	135	135	206	12-13.5	2-M12	170	5	5	17	17	16.0
BR100	100	28 × 6.4	1.5	90	80	270	210	143	143	240	12-17.5	2-M16	180	5	5	13.7	13.7	12.0
BR130	130	32 × 7.4	2.0	90	80	310	240	173	173	278	12-17.5	2-M16	210	5	5	13.7	13.7	12.0
BR150	150	36 × 8.4	2.0	90	80	400	310	243	243	360	12-17.5	2-M16	280	5	5	13.7	13.7	12.0
BR180	180	45×10.4	2.0	105	80	400	310	290	270	360	12-17.5	2-M16	280	5	20	11.5	15.9	14.0
BR190	190	45×10.4	2.0	105	80	420	330	310	280	380	16-17.5	2-M16	300	5	20	12.5	8.9	7.5
BR220	220	50 × 11.4	2.0	105	80	460	360	340	320	410	18-17.5	2-M16	330	5	20	12.5	10.9	9.0
BR240	240	56 × 12.4	2.0	105	80	490	390	370	350	440	18-17.5	2-M16	360	5	20	12.5	10.9	9.0

Model	Chai	mfer		Oil	Plug Po	sition/Dia.	Weight	Inertial Moment GD2
Model	N	Р	U	V	W	X × PT-Y	kg	kg·M²
BR 20	1.5	1.5	30.0	17.5	-	3 × PT-1/8	1.3	2.25×10^{-4}
BR 25	1.5	1.5	30.0	17.5	_	3 × PT-1/8	1.4	3.28×10^{-4}
BR 30	1.5	1.5	30.0	17.5	-	3 × PT-1/8	1.5	4.44×10^{-4}
BR 35	1.5	1.5	22.5	17.5	-	4 × PT-1/8	1.9	5.65×10^{-4}
BR 40	1.5	1.5	22.5	17.5	_	4 × PT-1/8	2.4	1.01×10^{-3}
BR 45	1.5	1.5	22.5	17.5	_	4 × PT-1/8	2.6	1.22×10^{-3}
BR 50	2.5	2.0	22.5	20	-	4 × PT-1/8	4.1	2.64×10^{-3}
BR 60	3.5	2.0	22.5	25	-	4 × PT-1/8	7.3	3.73×10^{-3}
BR 70	3.5	2.0	15.0	25	_	4 × PT-1/8	8.1	6.65×10^{-3}
BR 80	3.5	2.0	15.0	14	32	4 × PT-1/8	12.0	1.77×10^{-2}
BR 90	3.5	2.0	15.0	19	32	4 × PT-1/8	16.0	3.16×10^{-2}
BR100	4.5	2.0	15.0	20	40	4 × PT-1/4	23.0	6.31 × 10 ⁻²
BR130	4.5	2.0	15.0	20	40	4 × PT-1/4	31.0	0.109
BR150	4.5	3.0	15.0	20	40	4 × PT-1/4	58.0	0.365
BR180	4.5	3.0	15.0	20	40	4 × PT-1/4	60.0	0.435
BR190	4.5	3.0	11.25	20	40	4 × PT-1/4	65.0	0.563
BR220	4.5	3.0	10.0	20	40	4 × PT-1/4	76.0	0.789
BR240	4.5	3.0	10.0	20	40	4 × PT-1/4	84.0	1.05

Notes:

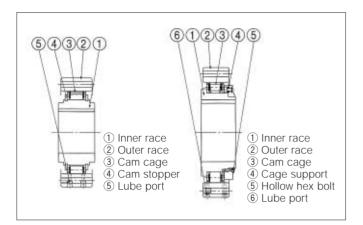
- Package type Cam Clutches are all made to order. To order, please refer to the dimension diagram. Please inform us if the Cam Clutch is to be used in a vertical application, and if the operating environment temperature will be less than -5°C or more than +40°C.
- There are cases when the free running rotation speed of the inner race will be limited when package type Cam Clutches are installed horizontally,
- If your application calls for a clutch engagement speed or inner race free running speed not listed in this catalog, please contact TSUBAKI.

Dimensions (Package Type)

							Dim	ensions in mm
Model	Shaft Dia. (H7)	Keyway	А	В	C (h7)	D	E	F-G
BR 20P	20	6 × 2.8	87	79	94	30	78	6-M 6
BR 25P	25	8 × 3.3	89	81	98	35	82	6-M 6
BR 30P	30	8 × 3.3	94	85	103	45	87	6-M 6
BR 35P	35	10 × 3.3	94	85	112	50	96	8-M 6
BR 40P	40	12 × 3.3	100	91	130	55	108	8-M 8
BR 45P	45	14 × 3.8	100	91	135	60	112	8-M 8
BR 50P	50	14 × 3.8	107	98	152	70	132	8-M 8
BR 60P	60	18× 4.4	122	112	180	80	155	8-M10
BR 70P	70	20 × 4.9	128	120	190	90	165	12-M10
BR 80P	80	22 × 5.4	148	134	210	110	185	12-M10
BR 90P	90	25 × 5.4	152	138	235	120	206	12-M12
BR100P	100	28× 6.4	186	172	275	130	240	12-M16
BR130P	130	32 × 7.4	208	188	314	160	278	12-M16
BR150P	150	36 × 8.4	226	204	400	200	360	12-M16
BR180P	180	45 × 10.4	240	233	400	220	360	12-M16
BR190P	190	45 × 10.4	250	242	420	240	380	16-M16
BR220P	220	50 × 11.4	250	242	460	260	410	18-M16
BR240P	240	56 × 12.4	260	252	490	280	440	18-M16

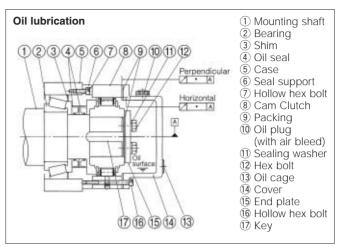
Note: All package type Cam Clutches must be special ordered. Refer to specification charts when ordering.

Capacities (Open Type)		Din	nensions in mm
	Rated Torque	Inner Race Sp	eed of Rotation	Max. Clutch
Model	Load (N·m)	Min. (r/min)	Max. (r/min)	Engagement Speed (r/min)
BR 20	306	880	3,600	350
BR 25	384	880	3,600	350
BR 30	607	880	3,600	350
BR 35	686	740	3,600	300
BR 40	980	720	3,600	300
BR 45	1,078	670	3,600	280
BR 50	1,715	610	3,600	240
BR 60	3,479	490	3,600	200
BR 70	4,735	480	3,600	200
BR 80	6,517	450	3,600	190
BR 90	8,526	420	3,000	180
BR100	14,210	460	2,700	200
BR130	20,384	420	2,400	180
BR150	33,908	370	1,300	160
BR180	33,908	370	3,500	160
BR190	41,160	340	3,000	140
BR220	51,058	330	3,000	140
BR240	62,034	310	3,000	130

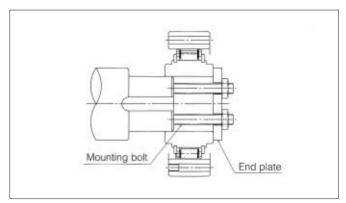

Capacities (Package Type)

Dimensions in mm

		-	Dill	TICHSIONS III IIIIII
	Rated Torque	Inner Race Sp	eed of Rotation	Max. Clutch
Model	Load (N·m)	Min. (r/min)	Max. (r/min)	Engagement Speed (r/min)
BR 20P	306	880	3,600	350
BR 25P	384	880	3,600	350
BR 30P	607	880	3,600	350
BR 35P	686	740	3,600	300
BR 40P	980	720	3,600	300
BR 45P	1,078	670	3,600	280
BR 50P	1,715	610	3,600	240
BR 60P	3,479	490	3,600	200
BR 70P	4,735	480	3,600	200
BR 80P	6,517	450	3,600	190
BR 90P	8,526	420	3,000	180
BR100P	14,210	460	2,500	180
BR130P	20,384	420	2,200	180
BR150P	33,908	370	1,300	160
BR180P	33,908	370	1,800	160
BR190P	41,160	340	1,800	140
BR220P	51,058	330	1,800	140
BR240P	62,034	310	1,800	130


■ USING THE BR SERIES OPEN TYPE CAM CLUTCH

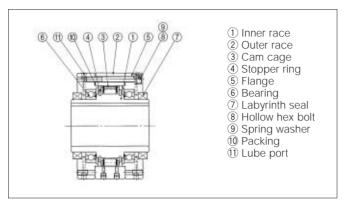

While the Cam Clutch can be disassembled by the user, reassembly may prove difficult. We recommend that you install the Cam Clutch as delivered.



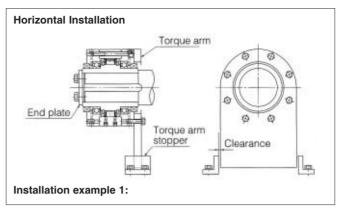
Installation and Usage

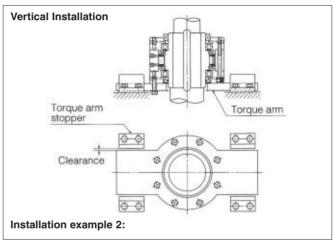
- We recommend using shaft tolerances of h6 or h7 for Cam Clutch installation.
- 2. Use a ISO R773 (DIN 6885.1) parallel key make sure that the key does not move in the keyway. A loose key will damage the Cam Clutch.
- 3. When installing the Cam Clutch over a shaft, please follow the procedure outlined below. Never strike the clutch with a steel hammer or apply unnecessary impact loads.
 - 1) Verify Cam Clutch direction of rotation. The arrow on the inner race shows the free running (cam disengaged) direction. Make sure that the direction of cam engagement matches the intended application.
 - 2) Tap the inner race lightly with a soft hammer moving around the race circumference so the Cam Clutch moves slowly and uniformly onto the end of the shaft. Make sure that the outer race does not become dislodged.
 - 3) Place an end plate over the inner race and use the mounting bolts to pull the Cam Clutch onto the shaft as shown in the diagram at right.
 - 4) Tighten the end plate securely.
- 4. If you are installing the outer race first, check the precision of the fit. The tolerances for outer race mounting are shown in the tables at right. Verify that the correct tolerances can be obtained. Out of spec installation could damage the Cam Clutch.
- 5. To lubricate the Cam Clutch, apply lubricant at the outer circumference of the inner race (see installation diagram). Avoid over lubrication, as it will cause the Cam Clutch to generate excessive heat.
- 6. When using the Cam Clutch at a reduction gearbox, make sure that oil from the gearbox cannot enter the Cam Clutch. Service life can be significantly shortened if the Cam Clutch comes in contact with gear oils that contain viscosity enhancing additives. Refer to page 76 for lubrication guidelines.
- 7. When installing a cover or seal support over the outer race, use bolts with a tensile rating of 10.9 or greater. Use a sealing agent or packing material between the mating services to prevent leakage.

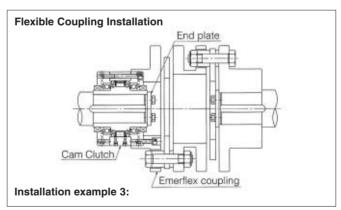
Parallel Tolerances

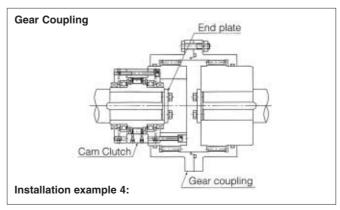

	[Dimensio	ns in mm
Model	Parallelism	Model	Parallelism
BR 20	0.10	BR 80	0.15
BR 25	0.10	BR 90	0.15
BR 30	0.10	BR100	0.25
BR 35	0.10	BR130	0.25
BR 40	0.10	BR150	0.25
BR 45	0.10	BR180	0.25
BR 50	0.10	BR190	0.25
BR 60	0.15	BR220	0.25
BR 70	0.15	BR240	0.25

Right Angle Tolerances


_		•		
		[Dimensio	ns in mm
Мо	del	Angularity	Model	Angularity
BR	20	0.04	BR 80	0.06
BR	25	0.04	BR 90	0.06
BR	30	0.04	BR100	0.08
BR	35	0.04	BR130	0.08
BR	40	0.04	BR150	0.08
BR	45	0.04	BR180	0.08
BR	50	0.04	BR190	0.08
BR	60	0.06	BR220	0.08
BR	70	0.06	BR240	0.08


■ USING THE BR SERIES PACKAGE TYPE CAM CLUTCH


Similar to previous types, the package type Cam Clutch is designed into a ball bearing cassette that makes installation with a torque arm and/or coupling fast and easy. The package type Cam Clutch is grease lubricated.

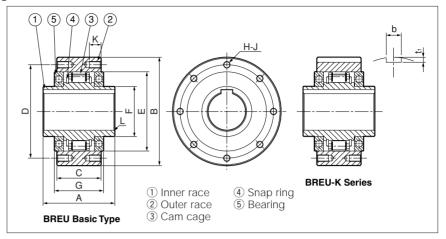


- 1. We recommend using shaft tolerances of h6 or h7 for Cam Clutch installation.
- 2. Use a ISO R773 (DIN 6885.1) parallel key. Make sure that the key does not move in the keyway. A loose key will damage the Cam Clutch.
- When installing the Cam Clutch over a shaft, please follow the procedure outlined below. Never hit the clutch with a steel hammer or apply unnecessary impact loads.
 - Verify the Cam Clutch direction of rotation. The arrow on the inner race shows the free running (cam disengaged) direction. Make sure that the direction of cam engagement matches the intended application.
 - 2) Tap the inner race lightly with a soft hammer moving around the race circumference so the Cam Clutch moves slowly and uniformly onto the end of the shaft. Make sure that the outer race does not become dislodged.
 - 3) Place an end plate over the inner race and use the mounting bolts to pull the Cam Clutch onto the shaft as shown in the diagram at right.
 - 4) Tighten the end plate securely to make sure that the Cam Clutch cannot move on the shaft.
- 4. If you using a torque arm, make sure that the bolts used to mount the torque arm have a tensile strength of 10.9 or greater, and tighten them securely.
- 5. Set a 2mm clearance between the torque arm and the torque arm stopper. If the torque arm is rigidly mounted, it will be applying a load to the Cam Clutch which can eventually damage it.
- 6. Install an appropriate coupling if there is a chance that the shaft will elongate from thermal expansion as encountered in some exhaust fan auxiliary drive system applications (see figure 4).
- 7. If thrust loads are encountered, install a thrust bearing which will prevent those thrust loads from being transferred to the Cam Clutch.
- 8. The Cam Clutch is pre-packed with grease before shipment and is ready for installation and operation. Refer to page 76 for lubrication guidelines.

BREU SERIES CAM CLUTCH

Capacities

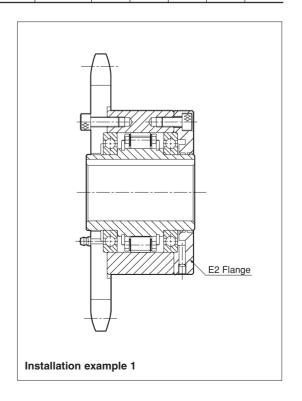
Model	Torque Capacity	Inner Race Ove	rrunning Speed	Max. Engagement
iviodei	N⋅m	Min. (r/min)	Max. (r/min)	Speed (r/min)
BREU 30 (K)	607	880	3600	350
BREU 35 (K)	686	780	3600	300
BREU 40 (K)	980	720	3600	300
BREU 45 (K)	1078	670	3600	280
BREU 50 (K)	1715	610	3600	240
BREU 55 (K)	1960	580	3600	220
BREU 60 (K)	3479	490	3600	200
BREU 70 (K)	4735	480	3600	200
BREU 80 (K)	6517	450	3600	190
BREU 90 (K)	8526	420	3000	180
BREU100 (K)	14210	460	2500	180
BREU130 (K)	20384	420	2200	180
BREU150 (K)	33908	370	1300	180



General Information for Installation and Usage

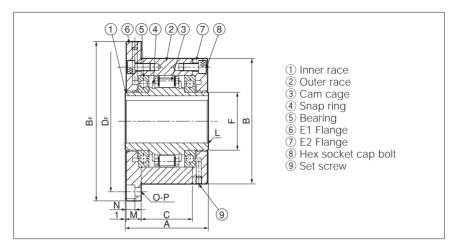
- 1. BREU series is a modular type Cam Clutch which is delivered as a BREU series Basic type or BREU-K series with option parts (E1, E2, E5, E7 flanges, E3 Torque arm and E4 cover) which are required as separate parts.
- 2. All models are pre-greased.
 - The operational temperature range is -40°C to +40°C.
 - Too much additional grease to both bearing inhibits the basic Cam Clutch function. Refer to page 63 for the maintenance.
- 3. We recommend a Shaft tolerance of h7, and DIN6885.1 keyway is standard.
- 4. We recommend tolerance of B and E H7 or H8 for sprockets, gears and other fitted parts.
- 5. Clean the surface of both end of the outer race and the contact surfaces of the flanges, torque arm and cover.
- 6. Verify the direction of rotation and attach the flanges, torque arm or cover.
- 7. When installing sprocket, gear, and other equipment to the clutch, fit them on the surface of the flange by using hexagon socket cap screws.
- 8. By installing each option part on the opposite side, the direction of rotation can be changed.
- 9. Fix the grease nipple and set screw to the option parts.
- 10. When mounting the clutch onto the shaft, apply pressure to the inner race but never to the outer race. Tap the inner race lightly with a soft hammer moving around the race circumference so the Cam Clutch moves slowly and uniformly onto the end of the shaft.
- 11. Do not use grease that contains EP additives.
- 12. Model No. BREU K
 - No Mark: No keyway on the outer race.
 - K: Keyway on the outer race.

BREU Basic series and BREU-K series



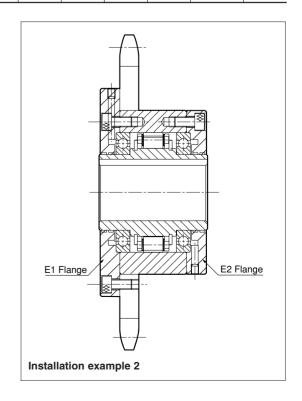
Dimensions														Dimensio	ns in mm
Model	Bore Size	Keyway	А	В	С	D	Е	F	G	H-J	K	L	b	t1	Weight
	H7			h7								С	P10		kg
BREU 30 (K)	30	8 × 3.3	76	100	51	87	75	45	56	6-M6	10	1.0	8	4.0	2.7
BREU 35 (K)	35	10 × 3.3	79	110	50	96	80	50	56	6-M6	12	1.0	10	5.0	3.2
BREU 40 (K)	40	12 × 3.3	86	125	53	108	90	55	59	6-M8	14	1.3	12	5.0	4.4
BREU 45 (K)	45	14 × 3.8	86	130	53	112	95	60	59	8-M8	14	1.3	14	5.5	4.7
BREU 50 (K)	50	14 × 3.8	94	150	64	132	110	70	72	8-M8	14	1.3	14	5.5	7.6
BREU 55 (K)	55	16 × 4.3	104	160	66	138	115	75	72	8-M10	16	1.5	16	6.0	8.9
BREU 60 (K)	60	18 × 4.4	120	170	84	150	125	80	95	10-M10	16	1.5	18	7.0	12.5
BREU 70 (K)	70	20 × 4.9	134	190	95	165	140	90	108	10-M10	16	1.8	20	7.5	17.2
BREU 80 (K)	80	22 × 5.4	144	210	100	185	160	105	108	10-M10	16	1.8	22	9.0	22.4
BREU 90 (K)	90	25 × 5.4	158	230	115	206	180	120	125	10-M12	20	2.0	25	9.0	30.3
BREU100 (K)	100	28 × 6.4	186	270	124	240	210	140	135	10-M16	24	2.0	28	10.0	45.5
BREU130 (K)	130	32 × 7.4	212	310	152	278	240	160	168	12-M16	24	2.5	32	11.0	67.0
BREU150 (K)	150	36 × 8.4	246	400	180	360	310	200	194	12-M20	32	2.5	36	12.0	145.0

- 1. By installing both parts on the opposite side, the direction of rotation can be changed.
- 2. When mounting the clutch onto the shaft, apply pressure to the inner race but never to the outer race. Tap the inner race lightly with a soft hammer moving around the race circumference so the Cam Clutch moves slowly and uniformly onto the end of the shaft.
- 3. All models are pre-greased.


 The ambient temperature range is -40°C to +40°C.

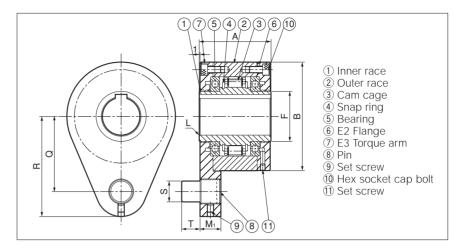
 Too much additional grease to both bearing inhibits the basic Cam Clutch function. Refer to page 65 for the maintenance.
- 4. Refer to page 56 for other general information and page 64 for maintenance.

E1+E2



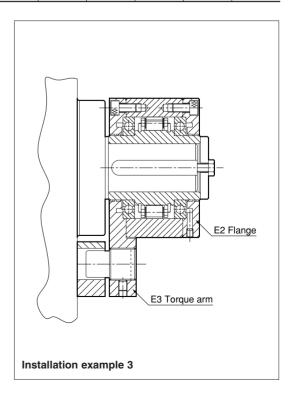
Dimensions Dimensions in												ons in mm	
Model	Bore Size	Keyway	А	В	B⊧	С	DF	F	L	М	N	O-P	Weight
	H7			h7					С				kg
BREU 30 (K) E1+E2	30	8 × 3.3	76	100	128	51	114	45	1.0	11.5	6.8	6- \$ 6.6	4.1
BREU 35 (K) E1+E2	35	10 × 3.3	79	110	140	50	124	50	1.0	13.5	6.8	6- \$ 6.6	5.2
BREU 40 (K) E1+E2	40	12 × 3.3	86	125	160	53	142	55	1.3	15.5	9.0	6- φ 9.0	7.5
BREU 45 (K) E1+E2	45	14 × 3.8	86	130	165	53	146	60	1.3	15.5	9.0	8- φ 9.0	7.9
BREU 50 (K) E1+E2	50	14 × 3.8	94	150	185	64	166	70	1.3	14.0	9.0	8- φ 9.0	11.1
BREU 55 (K) E1+E2	55	16 × 4.3	104	160	204	66	182	75	1.5	18.0	11.0	8- φ 11.0	14.7
BREU 60 (K) E1+E2	60	18 × 4.4	120	170	214	84	192	80	1.5	17.0	11.0	10- φ 11.0	17.9
BREU 70 (K) E1+E2	70	20 × 4.9	134	190	234	95	212	90	1.8	18.5	11.0	10- φ 11.0	24.5
BREU 80 (K) E1+E2	80	22 × 5.4	144	210	254	100	232	105	1.8	21.0	11.0	10- φ 11.0	32.5
BREU 90 (K) E1+E2	90	25 × 5.4	158	230	278	115	254	120	2.0	20.5	13.0	10- φ 14.0	40.5
BREU100 (K) E1+E2	100	28 × 6.4	186	270	335	124	305	140	2.0	30.0	17.5	10- φ 18.0	68.0
BREU130 (K) E1+E2	130	32 × 7.4	212	310	380	152	345	160	2.5	29.0	17.5	12- φ 18.0	95.0
BREU150 (K) E1+E2	150	36 × 8.4	246	400	485	180	445	200	2.5	32.0	21.5	12-φ22.0	197.0

- 1. By installing E1 flange and E2 flange on the opposite side, the direction of rotation can be changed.
- 2. When mounting the clutch onto the shaft, apply pressure to the inner race but never to the outer race. Tap the inner race lightly with a soft hammer moving around the race circumference so the Cam Clutch moves slowly and uniformly onto the end of the shaft.
- 3. All models are pre-greased.


 The ambient temperature range is -40°C to +40°C.

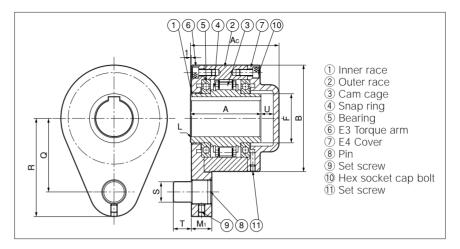
 Too much additional grease to both bearing inhibits the basic Cam Clutch function. Refer to page 63 for the maintenance.
- 4. Refer to page 56 for other general information and page 64 for maintenance.

E2+E3



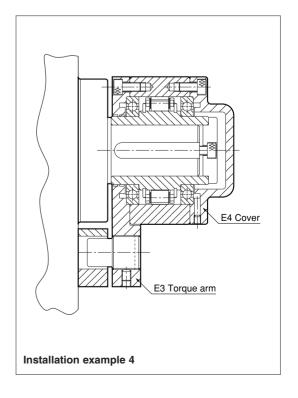
Dimensions Dimensions in m												
Model	Bore Size	Keyway	А	В	F	L	M ₁	Q	R	S	Т	Weight
	H7			h7		С						kg
BREU 30 (K) E2+E3	30	8 × 3.3	76	100	45	1.0	19	68	92	16	14	4.2
BREU 35 (K) E2+E3	35	10 × 3.3	79	110	50	1.0	22	76	102	20	18	5.0
BREU 40 (K) E2+E3	40	12 × 3.3	86	125	55	1.3	22	85	112	20	18	7.0
BREU 45 (K) E2+E3	45	14 × 3.8	86	130	60	1.3	25	90	120	25	22	7.7
BREU 50 (K) E2+E3	50	14 × 3.8	94	150	70	1.3	25	102	135	25	22	11.0
BREU 55 (K) E2+E3	55	16 × 4.3	104	160	75	1.5	30	108	142	32	25	14.0
BREU 60 (K) E2+E3	60	18 × 4.4	120	170	80	1.5	30	112	145	32	25	17.2
BREU 70 (K) E2+E3	70	20 × 4.9	134	190	90	1.8	35	135	175	38	30	24.5
BREU 80 (K) E2+E3	80	22 × 5.4	144	210	105	1.8	35	145	185	38	30	31.9
BREU 90 (K) E2+E3	90	25 × 5.4	158	230	120	2.0	45	155	205	50	40	41.1
BREU100 (K) E2+E3	100	28 × 6.4	186	270	140	2.0	45	180	230	50	40	65.0
BREU130 (K) E2+E3	130	32 × 7.4	212	310	160	2.5	60	205	268	68	55	94.0
BREU150 (K) E2+E3	150	36 × 8.4	246	400	200	2.5	60	255	325	68	55	190.0

- 1. By installing the E2 flange and E3 torque arm on the opposite side, the direction of rotation can be changed.
- 2. When mounting the clutch onto the shaft, apply pressure to the inner race but never to the outer race. Tap the inner race lightly with a soft hammer moving around the race circumference so the Cam Clutch moves slowly and uniformly onto the end of the shaft.
- 3. All models are pre-greased.


 The ambient temperature range is -40°C to +40°C.

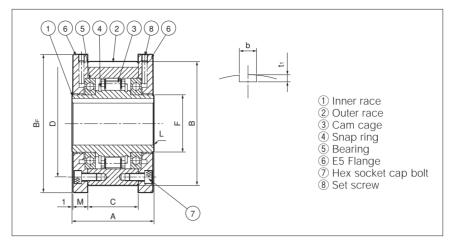
 Too much additional grease to both bearing inhibits the basic Cam Clutch function. Refer to page 63 for the maintenance.
- 4. Refer to page 56 for other general information and page 64 for maintenance.

E3+E4



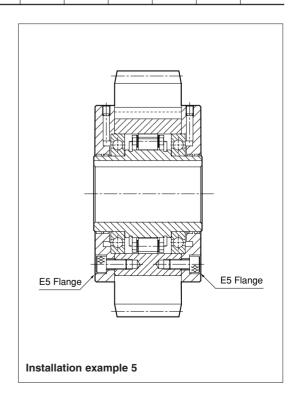
Dimensions													Dimensio	ons in mm
Model	Bore Size	Keyway	А	Ac	В	F	L	M ₁	Q	R	S	Т	U	Weight
Model	H7				h7		С							kg
BREU 30 (K) E3+E4	30	8 × 3.3	76	92	100	45	1.0	19	68	92	16	14	10	4.5
BREU 35 (K) E3+E4	35	10 × 3.3	79	97	110	50	1.0	22	76	102	20	18	12	5.3
BREU 40 (K) E3+E4	40	12 × 3.3	86	105	125	55	1.3	22	85	112	20	18	12	7.4
BREU 45 (K) E3+E4	45	14 × 3.8	86	108	130	60	1.3	25	90	120	25	22	15	8.1
BREU 50 (K) E3+E4	50	14 × 3.8	94	113	150	70	1.3	25	102	135	25	22	12	11.5
BREU 55 (K) E3+E4	55	16 × 4.3	104	126	160	75	1.5	30	108	142	32	25	15	15.6
BREU 60 (K) E3+E4	60	18 × 4.4	120	143	170	80	1.5	30	112	145	32	25	15	18.0
BREU 70 (K) E3+E4	70	20 × 4.9	134	164.5	190	90	1.8	35	135	175	38	30	22.5	25.5
BREU 80 (K) E3+E4	80	22 × 5.4	144	168	210	105	1.8	35	145	185	38	30	16	32.9
BREU 90 (K) E3+E4	90	25 × 5.4	158	192	230	120	2.0	45	155	205	50	40	27	43.4
BREU100 (K) E3+E4	100	28 × 6.4	186	221	270	140	2.0	45	180	230	50	40	28	67.0
BREU130 (K) E3+E4	130	32 × 7.4	212	250	310	160	2.5	60	205	268	68	55	30	97.0
BREU150 (K) E3+E4	150	36 × 8.4	246	286	400	200	2.5	60	255	325	68	55	32	193.0

- 1. By installing the E3 torque arm and E4 cover on the opposite side, the direction of rotation can be changed.
- 2. When mounting the clutch onto the shaft, apply pressure to the inner race but never to the outer race. Tap the inner race lightly with a soft hammer moving around the race circumference so the Cam Clutch moves slowly and uniformly onto the end of the shaft.
- 3. All models are pre-greased.

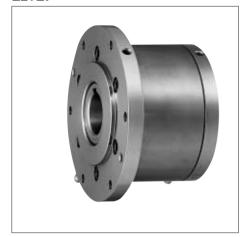

 The ambient temperature range is -40°C to +40°C.

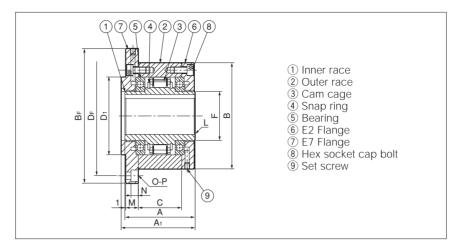
 Too much additional grease to both bearing inhibits the basic Cam Clutch function. Refer to page 63 for the maintenance.
- 4. Refer to page 56 for other general information and page 64 for maintenance.

E5+E5

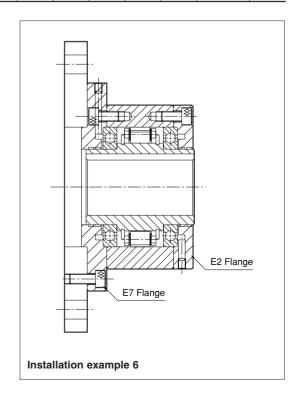


Dimensions												Dimensi	ons in mm
Model	Bore Size	Keyway	А	В	BF	С	D	F	L	М	b	t ₁	Weight
Wiodei	H7			h7					С		P10		kg
BREU 30K E5+E5	30	8 × 3.3	76	100	109	51	87	45	1.0	11.5	8	4.0	3.9
BREU 35K E5+E5	35	10 × 3.3	79	110	119	50	96	50	1.0	13.5	10	5.0	4.9
BREU 40K E5+E5	40	12 × 3.3	86	125	135	53	108	55	1.3	15.5	12	5.0	7.0
BREU 45K E5+E5	45	14 × 3.8	86	130	140	53	112	60	1.3	15.5	14	5.5	7.4
BREU 50K E5+E5	50	14 × 3.8	94	150	160	64	132	70	1.3	14.0	14	5.5	10.7
BREU 55K E5+E5	55	16 × 4.3	104	160	170	66	138	75	1.5	18.0	16	6.0	13.6
BREU 60K E5+E5	60	18 × 4.4	120	170	182	84	150	80	1.5	17.0	18	7.0	17.3
BREU 70K E5+E5	70	20 × 4.9	134	190	202	95	165	90	1.8	18.5	20	7.5	23.5
BREU 80K E5+E5	80	22 × 5.4	144	210	222	100	185	105	1.8	21.0	22	9.0	31.3
BREU 90K E5+E5	90	25 × 5.4	158	230	242	115	206	120	2.0	20.5	25	9.0	38.4
BREU100K E5+E5	100	28 × 6.4	186	270	282	124	240	140	2.0	30.0	28	10.0	63.0
BREU130K E5+E5	130	32 × 7.4	212	310	322	152	278	160	2.5	29.0	32	11.0	88.0
BREU150K E5+E5	150	36 × 8.4	246	400	412	180	360	200	2.5	32.0	36	12.0	184.0

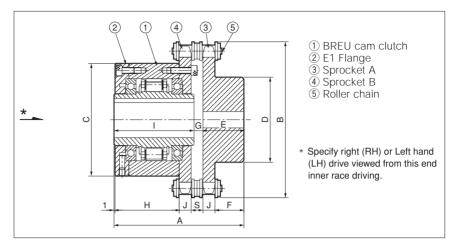

- 1. By turning the Cam Clutch on the opposite side, the direction of rotation can be changed.
- 2. Fix the grease nipple to the option parts.
- 3. When mounting the clutch onto the shaft, apply pressure to the inner race but never to the outer race. Tap the inner race lightly with a soft hammer moving around the race circumference so the Cam Clutch moves slowly and uniformly onto the end of the shaft.
- 4. All models are pre-greased.


 The ambient temperature range is -40°C to +40°C.

 Too much additional grease to both bearing inhibits the basic Cam Clutch function. Refer to page 63 for the maintenance.
- 5. Refer to page 56 for other general information and page 64 for maintenance.
- 6. E5+E5 flange is available only for BREU \underline{K} model.


E2+E7

Dimensions														Dimension	ns in mm
Model	Bore Size	Keyway	А	A 1	В	B⊧	С	D ₁	DF	F	L	М	N	O-P	Weight
	H7				h7			h7			С				kg
BREU 30 (K) E2+E7	30	8 × 3.3	76	78	100	128	51	75	114	45	1.0	11.5	6.8	6- <i>ф</i> 6.6	4.2
BREU 35 (K) E2+E7	35	10 × 3.3	79	81	110	140	50	80	124	50	1.0	13.0	6.8	6- <i>ф</i> 6.6	5.3
BREU 40 (K) E2+E7	40	12 × 3.3	86	88	125	160	53	90	142	55	1.3	15.0	9.0	6- φ 9.0	7.6
BREU 45 (K) E2+E7	45	14 × 3.8	86	88	130	165	53	95	146	60	1.3	15.0	9.0	8- φ 9.0	8.0
BREU 50 (K) E2+E7	50	14 × 3.8	94	96	150	185	64	110	166	70	1.3	13.0	9.0	8- φ 9.0	11.3
BREU 55 (K) E2+E7	55	16 × 4.3	104	106	160	204	66	115	182	75	1.5	17.0	11.0	8- φ 11.0	14.8
BREU 60 (K) E2+E7	60	18 × 4.4	120	122	170	214	84	125	192	80	1.5	16.0	11.0	10- φ 11.0	18.2
BREU 70 (K) E2+E7	70	20 × 4.9	134	136	190	234	95	140	212	90	1.8	17.5	11.0	10- φ 11.0	24.8
BREU 80 (K) E2+E7	80	22 × 5.4	144	146	210	254	100	160	232	105	1.8	20.0	11.0	10- φ 11.0	32.9
BREU 90 (K) E2+E7	90	25 × 5.4	158	160	230	278	115	180	254	120	2.0	19.0	13.0	10- φ 14.0	40.8
BEEU100 (K) E2+E7	100	28 × 6.4	186	188	270	335	124	210	305	140	2.0	28.0	17.5	10- φ 18.0	69.0
BREU130 (K) E2+E7	130	32 × 7.4	212	214	310	380	152	240	345	160	2.5	27.0	17.5	12- φ 18.0	96.0
BREU150 (K) E2+E7	150	36 × 8.4	246	248	400	485	180	310	445	200	2.5	30.0	21.5	12-φ22.0	198.0


- 1. By installing the E2 flange and E7 flange on the opposite side, the direction of rotation can be changed.
- 2. Fix the grease nipple to the option parts.
- 3. When mounting the clutch onto the shaft, apply pressure to the inner race but never to the outer race. Tap the inner race lightly with a soft hammer moving around the race circumference so the Cam Clutch moves slowly and uniformly
- 4. All models are pre-greased. The ambient temperature range is -40°C to +40°C. Too much additional grease to both bearing inhibits the basic Cam Clutch function. Refer to page 63 for the maintenance.
- 5. Too much overhang load to F7 flange also inhibits the basic Cam Clutch function. Add one more bearing to the fixed equipment on the correct center line if the overhang load is big
- 6. Refer to page 55 for other general information and page 63 for maintenance.

BREU SERIES CAM CLUTCH

COUPLING

Dimensions													Dimensio	ons in mm
Model	Bore Size	Keyway	А	В	С	D	Е	F	G	Н	ı	J	S	Weight
	H7				h7									kg
BREU 30 (K)-C	30	8 × 3.3	109.9	137	100	73	28	19.3	5.9	62.5	76	8.7	9.7	5.9
BREU 35 (K)-C	35	10 × 3.3	127.7	152	110	83	40	28.3	8.7	63.5	79	11.7	11.5	8.5
BREU 40 (K)-C	40	12 × 3.3	132.7	164	125	83	40	28.3	6.7	68.5	86	11.7	11.5	10.5
BREU 45 (K)-C	45	14 × 3.8	132.7	176	130	83	40	28.3	6.7	68.5	86	11.7	11.5	11.2
BREU 50 (K)-C	50	14 × 3.8	142.2	200	150	83	40	28.3	8.2	78.0	94	11.7	11.5	15.6
BREU 55 (K)-C	55	16 × 4.3	159.8	219	160	107	45	30.4	10.8	84.0	104	14.6	15.2	21.8
BREU 60 (K)-C	60	18 × 4.4	176.8	235	170	107	45	30.4	11.8	101.0	120	14.6	15.2	26.4
BREU 70 (K)-C	70	20 × 4.9	189.3	251	190	107	45	30.4	10.3	113.5	134	14.6	15.2	33.0
BREU 80 (K)-C	80	22 × 5.4	196.8	267	210	107	45	30.4	7.8	121.0	144	14.6	15.2	41.0

- 1. BREU-(K) C series Cam Clutch couplings make use of BREU series Cam Clutch and CR type couplings without cover.
- 2. Mount the clutch loosely on the high-speed shaft at first.
- 3. Accurately align both sprockets by checking with a straight edge on the teeth of both sprockets.
- 4. Check whether the clearance(S) between the two sprockets is correct, then wrap the chain around the sprockets.
- 5. Specify right hand (RH) or left hand (LH) as inner race overrunning direction from the view of cam clutch side (*) when ordering. See the above drawing.
- 6. The same lubrication as for Tsubaki roller chain is necessary for the coupling chain.
- 7. Ensure that the chain is properly closed with a connecting link and that the closed of the spring clip is installed in the same direction as the rotation of the outer race.

Lubrication

BREU series Cam Clutches need periodic maintenance and lubrication to both bearing to provide maximum performance throughout their service life. Lack of prescribed maintenance and lubrication will shorten the Service life of Cam Clutch and may cause unnecessary mechanical damage.

Recommended Grease

Oil Company	Ambient Temperature										
Oil Company	-5°C ∼ +40°C	-40°C ∼ +40°C									
Esso	Beacon 2	Beacon 325									
Mobil	Mobilux Grease No.2	Mobil temp SHC100									
Shell	Alvania Grease No.2	Alvania Grease RA									
ВР	Energrease LS2	Enargrease LT2									
TOTAL	Multis 2	Aerogrease 22									

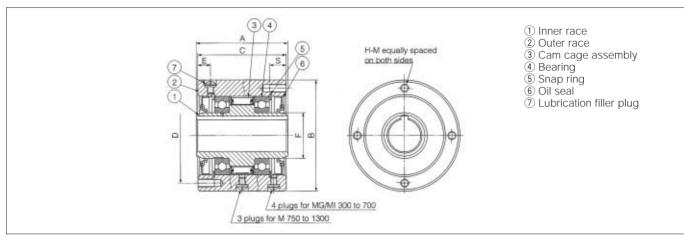
Note: Do not use Grease that contains EP additives.

E1~E7 options are supplied with bolts for installation, and the grease nipple.

Maintenance

BREU series Cam Clutches are pre-greased at the factory and should be re-greased every three months for both bearings after installation. Follow the procedure below.

- 1. Remove the set screw at the flange, torque arm or cover.
- 2. Inject equal amounts of grease into the bearing from the grease nipple. Refer to the grease volume table for the correct amount.
- 3. Run the Cam Clutch disengaged for from 20 to 30 minutes with the set screw removed. Excess of grease in the clutch area will flow out of the tapped holes. Be careful to avoid over greasing. Too much grease in the clutch will cause it to run hot, interfere with the clutch action, and may lead to mechanical damage.
- 4. Wipe off excess of grease and re-install the set screw.


Grease volume table

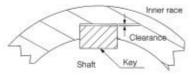
	_		
Model	Each bearing (g)	Model	Each bearing (g)
BREU30	10	BREU60	40
BREU35	10	BREU70	50
BREU40	15	BREU80	80
BREU45	20	BREU90	90
BREU50	30	BREU100	160
BREU55	30	BREU130	260
		BREU150	460

MG, MI SERIES CAM CLUTCH

■ MODELS MG300 TO MG1300/MI300 TO MI1300

For General Applications

Dimensions	and Ca	pacities	3													Dime	ensior	ns in mm
Model	Max. Torque	Nominal Overrun-	Ma Overru (r/n	unning	Max. indexing	Stock B	ck Bore Size		В	C	D	Е	F	G	H-M No. of	Lubrication Filler Plug	Oil	Weight
	(N·m)	ning Drag (N·m)	Inner Race	Outer Race	(cycle/min.)	Dia. (H7)	Keyway	. А	(h7)	,					Tapped Holes × Size × Pitch	Size × Pitch	(cc)	(kg)
MG 300 MI 300	314	0.225 0.304	2,800 50	900 —	300	19	5 × 2	63	77	60	66	10.4	28.5	13	4×M 6×P1.0	M 6×P1.0	25 50	1.8
MG 400 MI 400	539	0.284 0.372	2,600 50	800		22	5 × 2	70	88	67	73	10.7	31.7	16	4×M 8×P1.25	M 6×P1.0	30 60	2.7
MG 500 MI 500	1,620	0.510 0.676	2,400 50	800	300	31.5	7 × 3	89	108	86	92	12.3	44.4	16	4 × M 8 × P1.25	M 6×P1.0	50 100	5.0
MG 600 MI 600	3,140	0.843 1.55	2,100 30	700 —	300	50	12 × 3.5	95	136	92	120	12.8	69.8	16	6×M 8×P1.25	M 6×P1.0	80 160	8.6
MG 700 MI 700	5,880	1.70 2.63	1,500 30	500 —	 300	70	18× 6	127	180	124	160	19.8	101.5	20	6 × M10 × P1.5	M 6×P1.0	135 260	19.5
MG 750 MI 750	9,510	3.43 4.12	1,800 30	600 —	300	85	24× 6	153	200	150	175	75	110	25	8 × M14 × P2.0	M 8 × P1.25	400 800	37.0
MG 800 MI 800	17,600	5.39 8.33	1,300 20	475 —	300	110	28 × 7	158	250	155	220	77.5	140	25	8 × M16 × P2.0	M 8 × P1.25	500 1000	46.5
MG 900 MI 900	24,500	6.76 9.41	1,200 20	400 —		135	35 × 9	165	300	160	265	80	170	32	10 × M16 × P2.0	M 8 × P1.25	620 1240	70.5
MG1000 MI 1000	33,800	8.13 12.7	1,200 20	325 —	300	160	38 × 10	188	370	180	325	90	200	32	12 × M16 × P2.0	M 8 × P1.25	850 1700	108.5
MG1100 MI 1100	78,400	5.19 22.1	350 20		— 150	185	45 × 14	260	470	250	415	125	260	40	12 × M20 × P2.5	M12 × P1.75	2900 5800	250
MG1200 MI 1200	95,100	17.6 27.5	300 20		— 150	200	45 × 14	260	500	250	440	125	280	45	12 × M24 × P3.0		3000 6000	280
MG1300 MI 1300	176,400	18.7 28.1	250 20		— 150	250	56 × 17.5	280	600	260	530	130	340	50	12 × M30 × P3.5	M12 × P1.75	3800 7600	410

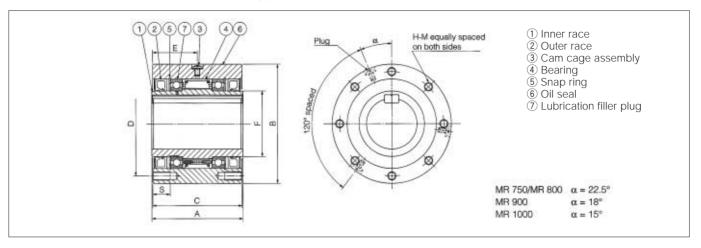

Installation and Usage

- 1. MG Series Cam Clutch is used for high speed inner race overrunning applications. MI Series Cam Clutch is used for indexing applications.
- 2. For attaching a pulley, a gear, or sprocket to the clutch, insert the clutch into the hub of the device, and screw the bolts (high tension) into the tapped holes on the clutch end. The tolerance bore of the hub should be H6 or H7 of JIS standard. See the installation illustration on page 66.
- Recommended shaft tolerances are as follows:

Model	Tolerance
M 300, M 400	+0 to -0.021
M 500, M 600	+0 to -0.025
M 700	+0 to -0.030
M 750, M 800	+0 to -0.035
M 900, M 1000	+0 to -0.040
M 1100, M 1200, M 1300	+0 to -0.046

4. The key should be in accordance with JIS B1301-1959. However, for M750 and above models, a key is attached.

- 5. Use only a parallel key to secure the clutch. Never use a tapered
- 6. If the clutch receives shock loads or is designed for use at full torque capacity, it is better to use a hardened key and shaft.
- 7. Allow for a clearance between the top of the clutch keyway and the top of the key for pressure ventilation of the clutch in the case of MG Series. A pressure ventilation hole is provided on the keyway of the clutch inner race.
- When mounting the clutch on a



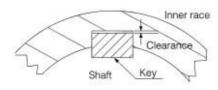
- shaft, apply pressure to the inner race, but never to the outer race.
- 9. Thrust load should be taken up by other devices, not by the Cam
- 10. When using MG Series at medium and high speeds, pay attention to heating. Longevity is shortened if the temperature of Cam Clutch outer race rises to over 70°C. In this case, use a different model or provide an oil bath or forced lubrication.
- 11. Oil is not sealed in at the time of shipment. Supply an appropriate amount of oil before use.
- 12. When placing an order for MG Series Cam Clutch model MG 750 and above, please inform TSUBAKI of the overrunning speed you use.
- See "Information for Selection" on page 73.
- See "Lubrication and Maintenance" on page 75.

MR SERIES CAM CLUTCH

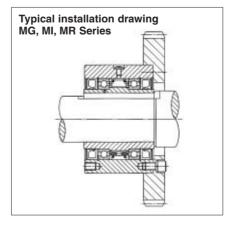
■ MODELS MR 750 TO MR 1000

Outer Race Rotation and Lift-Off Cam Type

Dimensions and Capacities

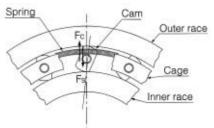

Dilliensions	and Capa	icities												D	imensio	ns in mm
	Max.		errunning nin)	Stock B	Stock Bore Size		В	_	7	_	_	F C	H-M	Lubrication	Oil	Weight
Model	Torque (N·m)	Inner Race	Outer Race	Dia. (H7)	Keyway	А	(h7)	C	U	E	F	5	No. of Tapped Holes × Size × Pitch	Filler Plug Size × Pitch	(cc)	(kg)
MR 750	9,510	525	2,600	85	24 × 6	153	200	150	175	75	110	25	8 × M14 × P2.0	M8 × P1.25	400	37.0
MR 800	17,600	475	2,100	110	28 × 7	158	250	155	220	77.5	140	25	8 × M16 × P2.0	M8 × P1.25	500	46.5
MR 900	24,500	400	1,850	135	35×9	165	300	160	265	80	170	32	10 × M16 × P2.0	M8 × P1.25	620	70.5
MR 1000	33,800	325	1,600	160	38×10	188	370	180	325	90	200	32	12 × M16 × P2.0	M8 × P1.25	850	108.5

Installation and Usage


- MR Series Cam Clutch is used for outer race overrun in highspeed applications.
- 2. For attaching a pulley, a gear, or a sprocket to the clutch, insert the clutch into the hub of the said device, and screw the bolts (high tension) into the tapped holes on the clutch. The tolerance of the bore hub should be H6 or H7 of ISO R773. See the illustration on this page.
- 3. Recommended shaft tolerances are as follows:

Model	Tolerance
MR 750, MR 800	+0 to -0.035
MR 900. MR 1000	+0 to -0.040

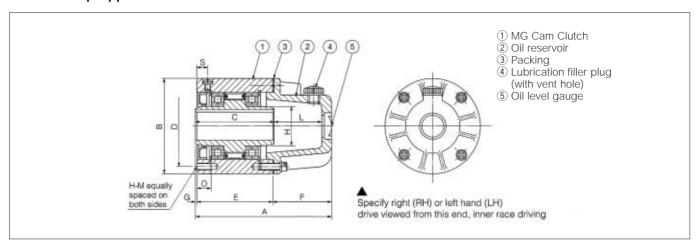
- 4. When mounting the clutch on a shaft, apply pressure to the clutch inner race, but never to the outer race.
- 5. Allow for a clearance between the top of the clutch keyway and the top of the key for pressure ventilation. A pressure ventilation hole is provided on the keyway of the clutch inner race.



- When the clutch receives a shock load or is designed for use at full torque capacity, it is better to use it on an unannealed or hardened shaft.
- 7. Thrust load should be taken up by other devices, not by the Cam Clutch.
- MR Series Cam Clutch includes special keys (hardened) which have a special height dimension. The depth of the key groove for the shaft should comply with ISO R773.
- Forced lubrication is recommended for continuous operation. Consult TSUBAKI regarding the method.
- Oil is not sealed in at the time of shipment. Supply an appropriate amount of oil before use.

Lift-off (Outer race rotation type)

MR Series Cam Clutch is structured so that the cam rotates together with the outer race when the outer race overruns. As shown in the figure, the spring force (Fs) works to make the cam come in contact with the inner and outer races with fixed pressure. Conversely, the eccentric force (Fc), which works on the cam when overrunning, applies a moment in the direction where the cam does not contact the inner and outer races. Accordingly, when the overrunning speed is increased, the eccentric force (Fc) increases and the movement is augmented over the movement caused by the spring force. Next, the cam lifts off from the inner race and loses contact with it. This phenomenon is called "lift-off." In this state, there is no friction on the cam and it continues overrunning as long as the bearing lasts.

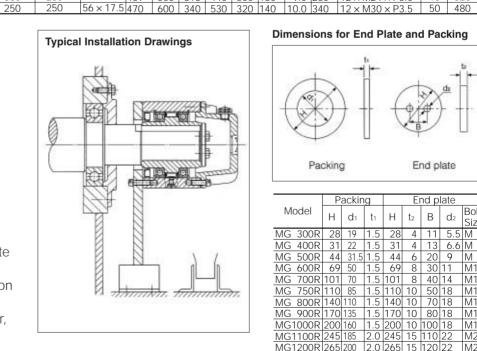


- See "Information for Selection" on page 73.
 See "Lubrication and Maintenance" on
- page 75.

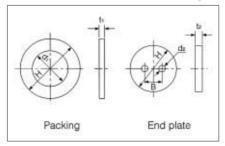
MG-R SERIES CAM CLUTCH

■ MODELS MG 300R TO MG 1300R

For Backstop Applications with Oil Reservoir



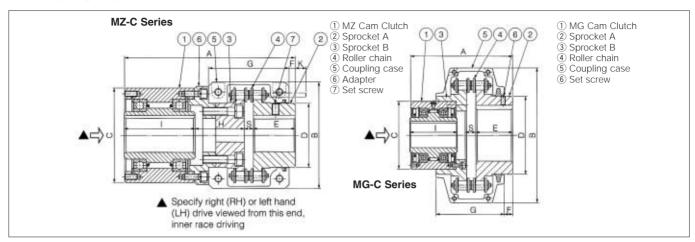
Dimensions and Capacities


Dillicitatoria	and Capac	itics												DIM	ensio	ns in mm
	Max.	Nominal Overrun-	Max. Overrunning	Stock Bore Size			В	В				0		H-M No. of	_	Weight
Model	Torque (N·m)	ning Drag (N·m)	(r/min) Inner Race	Dia. (H7)	Keyway	A	(h7)		D	E	F	G	Н	Tapped Holes × Size × Pitch	5	(kg)
MG 300R	314	0.157	2,800	19	5 × 2	115	77	63	66	60	53.5	1.5	28.5	4×M 6×P1.0	13	2.0
MG 400R	539	0.196	2,600	22	5 × 2	122	88	70	73	67	53.5	1.5	31.7	4 × M 8 × P1.25	16	3.0
MG 500R	1,620	0.353	2,400	31.5	7 × 3	154	108	89	92	86	66.5	1.5	44.4	4 × M 8 × P1.25	16	5.5
MG 600R	3,140	0.588	2,100	50	12 × 3.5	165	136	95	120	92	71.5	1.5	69.8	6 × M 8 × P1.25	16	9.5
MG 700R	5,880	1.19	1,500	70	18 × 6	207	180	127	160	124	81.5	1.5	101.5	6 × M10 × P1.5	20	21.0
MG 750R	9,510	2.74	1,800	85	24×6	280	200	153	175	150	128.5	1.5	110	8 × M14 × P2.0	25	40.3
MG 800R	17,600	4.31	1,300	110	28 × 7	298.5	250	158	220	155	142	1.5	140	8 × M16 × P2.0	25	50.6
MG 900R	24,500	5.39	1,200	135	35×9	314.5	300	165	265	160	152	2.5	170	10 × M16 × P2.0	32	77.6
MG1000R	33,800	6.47	1,200	160	38×10	341	370	188	325	180	157	4.0	200	12 × M16 × P2.0	32	116.6
MG1100R	78,400	12.7	350	185	45×14	400	470	260	415	250	140	5.0	260	12 × M20 × P2.5	40	275
MG1200R	95,100	15.3	300	200	45×14	439	500	318	440	300	130	9.0	280	12 × M24 × P3.0	45	320

Installation and Usage

- 1. MG-R Series Cam Clutch consists of MG Series Cam Clutch and oil reservoir. See "Installation and Usage" on page 66 for MG series clutch.
- 2. These clutches are used for backstop applications.
- 3. Specify right hand (RH) or left hand (LH) drive of inner race viewed from the end marked with the arrow.
- 4. Prevent oil leakage from the shaft end by using an end plate with packing and sealed washers. Refer to the installation drawing on the right.
- 5. When attaching an oil reservoir, be sure to put packing in between the Cam Clutch end and oil reservoir. Position one of the plugs of the Cam Clutch underneath as a drain and the oil reservoir plug directly above it.
- See "Information for Selection" on page 73.
- · See "Lubrication and Maintenance" on page 75.

Dimensions for End Plate and Packing


	Р	ackin	g	End plate								
Model	Н	d ₁	t ₁	Н	t ₂	В	d ₂	Bolt Size				
MG 300R	28	19	1.5	28	4	11	5.5	M 5				
MG 400R	31	22	1.5	31	4	13	6.6	M 6				
MG 500R	44	31.5	1.5	44	6	20	9	M 8				
MG 600R	69	50	1.5	69	8	30	11	M10				
MG 700R	101	70	1.5	101	8	40	14	M12				
MG 750R	110	85	1.5	110	10	50	18	M16				
MG 800R	140	110	1.5	140	10	70	18	M16				
MG 900R	170	135	1.5	170	10	80	18	M16				
MG1000R	200	160	1.5	200	10	100	18	M16				
MG1100R	245	185	2.0	245	15	110	22	M20				
MG1200R	265	200	2.0	265	15	120	22	M20				
MG1300R	325	250	2.0	325	15	150	22	M20				

The above packing and end plate are to be prepared by the customer.

MZ-C, MG-C SERIES CAM CLUTCH

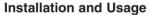
■ MODELS MZ20C TO MZ70C AND MG300C TO MG1000C

For Coupling Applications

Dimensions	and Capa	cities																Dime	ensior	ns in mm
Model	Max. Torque	Nominal Overrun-	Ma Overru (r/m	inning	Clutch Side Stock Bore Size		Coupling Side Bore Dia. Range		А	B (1.7)	С	D	E	F	G	Н	_	K	S	Weight
	(N·m)	ning Drag (N·m)	Inner Race	Dia. (H7)	Outer Race	Key- way	Min.	Max.		(n /)										(kg)
MZ 20C	323	0.294	1,600	700	20	6 × 2.8	15	40	174	111	80	60	45	7.35	85	52.3	67	12	9.7	6.1
MZ 30C	735	0.392	1,500	500	30	10×3.3	15	45	194	122	100	70	45	7.35	85	57.3	82	12	9.7	9.4
MZ 45C	1,620	0.686	1,400	300	45	14×3.8	20	65	226	142	125	85	56	8.7	106	66.5	92	15	11.5	15.8
MZ 60C	2,110	0.98	1,200	250	60	18×4.4	20	75	236	167	155	110	56	8.7	106	66.5	102	15	11.5	24.5
MZ 70C	3,040	1.27	1,100	250	70	20×4.9	25	80	260	186	175	115	63	5.6	130	76.8	105	30	15.2	32.6

Installation and Usage

- 1. MZ-C Series Cam Clutch is clutch coupling utilizing MZ Series Cam Clutch. Refer to "Installation and Usage" on page 22 for the MZ Series Cam Clutches.
- 2. First mount the clutch loosely on the high-speed shaft.
- 3. Accurately align both sprockets by checking with a straight edge on the teeth of both sprockets. Check if the clearance (S) between the two sprockets is correct and then wrap the chain
- around the sprockets.
- 4. Specify right hand (RH) or left hand (LH) inner race drive when ordering. See the drawing above.
- 5. The same lubrication as for TSUBAKI Roller Chain is necessary for the coupling chain.

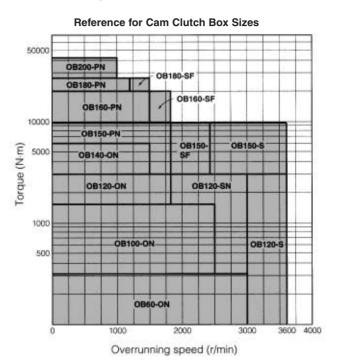

Dimensions	and Capac	cities														Dim	ensio	ns in mm
Model			(r/min)		Clutch Side Stock Bore Size		Coupling Side Bore Dia. Range		A	В	C	D	Е	F	G		S	Weight
	(N·m)	ning Drag (N⋅m)	Inner Race	Dia. (H7)	Outer Race	Key- way	Min.	Max.			(h7)							(kg)
MG 300C	314	0.225	2,800	900	19	5 x 2	20	56	155	142	77	85	56	8.7	106	11.5	63	8.5
MG 400C	539	0.284	2,600	800	22	5 x 2	20	75	160	167	88	110	56	8.7	106	11.5	70	13.5
MG 500C	1,620	0.510	2,400	800	31.5	7 x 2	30	100	195	220	108	140	71	13.55	130	15.2	89	28
MG 600C	3,140	0.843	2,100	700	50	12 x 3.5	45	125	250	307	136	170	90	14.8	181	22.7	95	52
MG 700C	5,880	1.70	1,500	500	70	18 x 6	55	150	275	357	180	210	100	24.8	181	22.7	127	80
MG 750C	9,510	3.43	1,800	600	85	24 × 6	60	160	340	406	200	224	112	2.1	250	30.1	153	147
MG 800C	17,600	5.39	1,300	475	110	28 x 7	75	200	370	472	250	280	140	30	250	30.1	158	182
MG 900C	24,500	6.76	1,200	400	135	35 x 9	98	260	496	578	300	374	241	121.7	280	37.5	165	420
MG1000C	33,800	8.13	1,200	325	160	38 × 10	108	285	510	_	370	408	241	_	_	37.5	188	470

- 1. MG-C Series Cam Clutch is clutch coupling utilizing MG Series Cam Clutch. Refer to "Installation and Usage" of MG Series Cam Clutch on page 66.
- 2. First mount the clutch loosely on the high-speed shaft.
- 3. Accurately align both sprockets by checking with a straight edge on the teeth of both sprockets. Check if the clearance (S) between the two sprockets is correct, then wrap
- the chain around the sprockets.
- 4. Specify right hand (RH) or left hand (LH) inner race drive when ordering. See the drawing above.
- 5. The same lubrication as for TSUBAKI Roller Chain is necessary for the coupling chain.

CAM CLUTCH BOX (high-speed continuous running applications)

The Cam Clutch Box Series is a Cam Clutch designed within a case that uses an ideal lubrication method to enable continuous high-speed operation. Cam Clutch Boxes are available in seven different types consisting of different combinations of lubrication systems, cooling systems, and auxiliary reducers.

Mode	el	Lubrication System	Sealing	Application	Page
	OB-ON	Oil bath	Oil seal	Overrunning, high speed disengaged; high-speed, low-mid speed engaged	70
	OB-PN	Screw pump and oil bath	Oil slinger and labyrinth seal	Overrunning, high speed disengaged; low-mid speed engaged	71
Standard Series	OB-SF	Screw pump and impeller (water cooled)	Oil slinger and labyrinth seal	Overrunning, high speed disengaged; high-speed engaged	71
	OB-SN	Screw pump and impeller	Oil slinger and labyrinth seal	Overrunning, high speed disengaged; high-speed engaged	71
	OB-S	Pressure lubrication	Oil slinger and labyrinth seal	Overrunning, high speed disengaged; high-speed engaged	71
Reducers	ТВ	Screw pump and oil bath	Oil slinger and labyrinth seal	Overrunning, high speed disengaged; low-speed engaged	72



- 1. Pre-Installation:
 - a. Check that the unit has not been damaged during shipment.
 - b. Verify the specified rotational direction of every shaft.
 - c. Do not apply impact shocks to the shaft when installing couplings.
- 2. Installation:

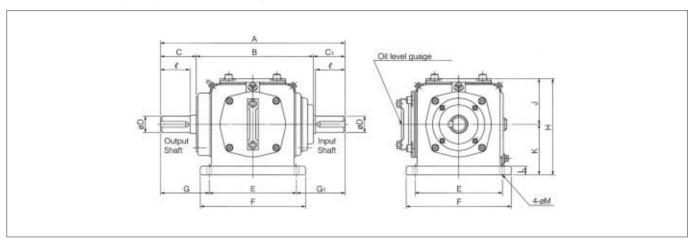
In order to prevent vibrations which can result from misalignment, make sure that the foundation where the Cam Clutch Box will be mounted is completely flat and rigid. Alignment tolerances of coupled shafts should be within 0.03 mm T.I.R. (Total Indication Reading). Recheck this specification after the installation is complete.

- 3. Lubrication:
 - Fill the Cam Clutch Box with the recommended lubricant up to the mark shown by the oil level gauge.
- 4. Maintenance:

Change the oil after the initial test run before putting the Cam Clutch Box into service, and change the oil every six months thereafter. Shut down the system before changing the oil. Procedure is 1) Drain the oil, 2) use flushing oil to clean the Cam Clutch Box, and 3) fill with fresh oil.

- 5. Note for OB-SF Series.
 - a. If you need to cool the OB-SF Series, run cold water (less then 35°C) through the cooling fin tubes at a rate of 10 liters per minute.
 - b. To make inspection easier, the OB-SF series is equipped with a drag brake which prevents the system from turning the shaft by drag torque. Refer to operating manual for brake operating procedure.
- 6. Please refer to the installation manual for the specific unit for more detailed information.

Recommended Lubricants

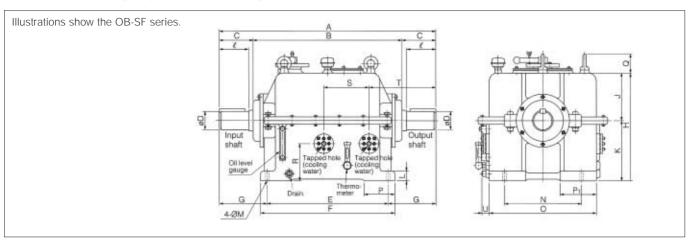

Brand	Lubricant Name
Mobil	Mobil DTE Oil Light Mobil DTE Oil Medium Mobile DTE Oil Heavy Medium
Esso Standard	Teresso 32-68
Shell oil	Turbo Oil T 32-68
Nihon oil	FBK Turbine 32-68

Do not use lubricants that contain EP additives.

OB-ON SERIES CAM CLUTCH BOX

■ MODELS OB 60 TO OB 140

For Continuous High-speed Overrunning


Dimensions	Dimensions and Capacities Dimensions in m														
Model	Max. Torque (N·m)	Max. Overrunning Speed, Output Shaft (r/min)	Max. Engaging Speed (r/min)	А	В	С	C ₁	E	F	G	G ₁	Н	J		
OB 60-ON	314	0 – 3,000	0 – 1,800	300	200	55	45	152	192	77	71	174	84		
OB 100-ON	1,620	0 – 2,500	0 – 1,800	430	258.5	91.5	80	195	235	120	115	221	106		
OB 120-ON	3,140	0 – 1,800	0 – 1,500	605	355	130	120	290	340	160	155	328.5	153.5		
OB 140-ON	5,880	0 – 1,500	0 – 1.000	670	400	140	130	330	390	175	165	368.5	168.5		

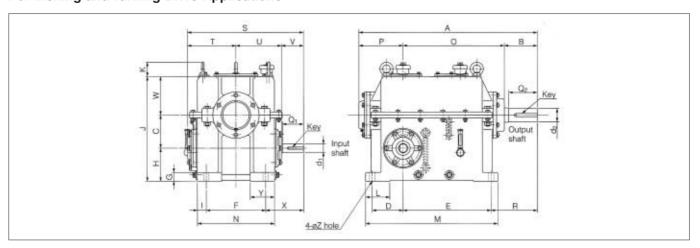
Model	K	L	М	l	D (m6)	Keyway	Lubricant (l)	Weight (kg)
OB 60-ON	90	20	14	40	25	7× 7× 34 ℓ	1	15
OB 100-ON	115	22	14	75	40	10 × 8 × 68 ℓ	2	45
OB 120-ON	175	32	21	115	50	12× 8×107ℓ	7	90
OB 140-ON	200	40	25	125	60	15 × 10 × 115 ℓ	10	150

OB-SF, OB-SN, OB-S, OB-PN SERIES CAM CLUTCH BOX

■ MODELS OB 120 TO OB 200

For Continuous High-speed Overrunning

Dimensions	Dimensions and Capacities Dimensions in mm																		
Model		Forque ·m)	Speed	Max. Overrunning Speed, Output Shaft (r/min)		Max. Engaging Speed (r/min)			В	С		E	F		G	Н	J	K	L
OB 120-SN	3,1	140	500 -	- 3,000	500 – 3,000		77	70	570	10)	440	500) ′	165	380	180	200	30
*OB 120-S	3,1	140	0 -	0 – 3,600		0 - 3,600		70	570	10)	440	500)	165	380	180	200	30
OB 150-PN	9,5	510	0 -	0 – 1,800		0 - 600		10	570	17	170 4		500) 2	235	380	180	200	30
OB 150-SF	9,5	510	500 -	500 – 2,400		500 – 2,400		30	680	15)	550	610) 2	215	505	225	280	35
*OB 150-S	9,5	510	0 -	0 – 3,600		0 – 3,600		20	620	15)	390	510) 2	265	455	225	230	30
OB 160-PN	17,6	500	0 -	0 – 1,500		0 - 500		60	680	19)	550	610) 2	255	505	225	280	35
OB 160-SF	17,6	500	500 -	500 – 1,800		500 – 1,800		70	750	16)	610	670) 2	230	550	250	300	40
OB 180-PN	24,5	500	0 – 1,200			0 - 400		50	750 2)	610 670) 2	270	550	250	300	40
OB 180-SF	24,500 400		400 -	- 1,500	400 – 1,500		1,16	60	800 180		180 660		730) 2	250	655	300	355	45
OB 200-PN	40,2	40,200 0 – 1,000		(0 – 300		70	750	21)	630	700) 2	270	600	250	350	45	
Model	М	N	0	Р	P ₁	Q	R	-	S	Т	U		l	D (mé))	Key	Weight	Lubricant	Cooling


Model	М	N	0	Р	P ₁	Q	R	S	Т	U	l	D (m6)	Key	Weight (kg)	Lubricant (ℓ)	Cooling Water (l /min.)
OB 120-SN	24	270	370	100	100	66	_	_	_	_	80	60	15 × 10 × 67	190	12	_
OB 120-S	24	270	370	100	100	66	_	_	_	_	80	60	15 × 10 × 67	320	*10 ℓ /min.	_
OB 150-PN	24	270	370	100	100	66	_	_	_	_	150	70	18 × 12 × 136	250	15	_
OB 150-SF	26	370	500	130	130	86	190	277	300	30	130	80	20 × 13 × 115	500	30	10
OB 150-S	24	430	480	_	60	_	_	_	_	_	130	80	20 × 13 × 115	450	*20 ℓ /min.	_
OB 160-PN	26	370	500	130	130	86	_	_	_	_	170	85	24 × 16 × 153	400	40	_
OB 160-SF	28	400	550	150	185	86	190	277	326	30	140	100	28 × 18 × 120	650	35	10
OB 180-PN	28	400	550	150	185	86	_	_	_	_	180	100	28 × 18 × 161	550	50	_
OB 180-SF	32	450	610	180	205	105	255	265	349	30	160	120	32 × 20 × 139	800	45	10
OB 200-PN	32	410	550	200	200	110	_	_	_	_	190	120	32 × 20 × 169	700	60	

Note: *OB120-S and OB150-S are forced lubrication types.

TB SERIES CAM CLUTCH BOX

■ MODELS TB 40-120 TO TB 80-180

For Inching and Turning Drive Applications

Capacities

Model	Max. Torque (N·m)	Max. Overrunning Speed (r/min)			
TB 40-120	3,140	1,800			
TB 60-140	5,880	1,500			
TB 60-150	9,510	1,800			
TB 70-160	17,600	1,500			
TB 80-180	24,500	1,200			

Applicable 6 pole motor and reduction ratios

Dimensions	in	kw

Ratio		Input Speed 1,150 r/min								Input Speed 950 r/min						
Model	10	15	20	25	30	40	50	60	10	15	20	25	30	40	50	60
TB 40-120	5.5	3.7	3.7	2.2	2.2	1.5	1.5	0.75	5.5	3.7	2.2	2.2	2.2	1.5	1.5	0.75
TB 60-140	15	11	7.5	7.5	5.5	3.7	3.7	2.2	11	7.5	7.5	5.5	5.5	3.7	3.7	2.2
TB 60-150	15	11	7.5	7.5	5.5	3.7	3.7	2.2	11	7.5	7.5	5.5	5.5	3.7	3.7	2.2
TB 70-160	22	15	11	7.5	7.5	5.5	5.5	3.7	15	15	11	7.5	7.5	5.5	3.7	3.7
TB 80-180	22	_	15	ı	11	7.5	7.5	5.5	22	_	15	ı	11	7.5	5.5	5.5

Dimensions																Din	nension	s in mm
Model	А	В	С	D	Е	F	G	Н	ı	J	K	L	М	N	0	Р	R	S
TB 40-120	612	115	100	100	300	175	30	100	30	330	56	75	460	235	345	152	160	357
TB 60-140	810	150	150	140	400	270	40	150	40	475	65	110	600	350	460	200	210	527
TB 60-150	830	170	150	140	400	330	40	150	40	475	65	110	600	350	460	200	230	527
TB 70-160	890	190	177	150	430	270	45	180	45	565	76	120	640	420	490	210	250	607
TB 80-180	955	200	200	165	465	370	42	200	50	630	91	70	690	470	525	230	260	670

	_		.,		,	.,	.,	7	Input Shaft				Output Shaft		Oil in Clutch	Oil in Reducer	Weight
Model	I	U	V	W	X	Y	Z	d ₁ (h7)	Key	Q ₁	d ₂ (h7)	Key	Q ₂		Chamber (ℓ)	Weight (kg)	
TB 40-120	147	138	72	130	122	75	16	28	7×7×50 l	68	40	10 × 8 × 100 ℓ	110	5.5	4	125	
TB 60-140	220	207	100	175	172	110	24	38	10 × 8 × 73 ℓ	96	60	15 × 10 × 117 ℓ	130	17	10	290	
TB 60-150	220	207	100	175	172	110	24	38	10 × 8 × 73 ℓ	96	70	18 × 12 × 136 ℓ	150	17	10	300	
TB 70-160	252	242	113	210	190	130	30	45	12 × 8 × 88 ℓ	108	85	24 × 16 × 153 ℓ	170	25	15	500	
TB 80-180	285	270	115	230	200	_	28	48	12×8×90 l	110	100	28 × 18 × 161 ℓ	180	27	23	650	

Note: 1. The oil in the clutch chamber and in the reducer chamber are different. Be sure to use the recommended oil in each chamber.

^{2.} Motors for TB Series Cam Clutch Box are optional. Please specify when a Cam Clutch Box with motor is required.

■ INFORMATION FOR SELECTION

Selection Procedure

- 1. Determine the mode of operation (indexing, overrunning, or backstopping).
- 2. Refer to the selection procedure corresponding to the mode of operation.

Indexing

- a) When detailed load conditions can be calculated, apply formula A, and when not, apply formula B and check the torque on the Cam Clutch.
- b) Select the clutch by:
 - a) Design torque requirement
 - b) Maximum indexing cycles N
 - c) Feeding angle θ

 $\theta \ge 90^{\circ}....MI-S$

 θ < 90°....Other series

d) $N \times \theta$

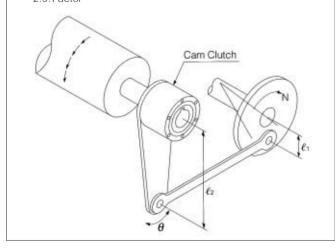
 $N \times \theta \le 20,000...MZ$, PB, 200, MI, MX, PO, PG, PS

 $N \times \theta \le 50,000...MI-S$

e) Bore size and installation method

Note: MX Series are designed especially for high-speed and high-accuracy indexing. Please consult TSUBAKI for proper selection.

Formula A:


$$T = \frac{J \cdot q \cdot N^2}{10380} + T_B$$

- T: Loaded torque on Cam Clutch (N·m)
- J: Inertia of load (kgf·m²) on Cam Clutch shaft
- θ: Feeding angle (deg) on Cam Clutch shaft
- N: Indexing cycles per minute (c/mm.)
- TB: Brake torque calculated on Cam Clutch shaft (N·m)

Formula B:

$$T = \frac{9550 \cdot kW}{n} \cdot \frac{\ell_2}{\ell_1} \times 2.5$$

- T: Loaded torque on Cam Clutch (N·m)
- kW: Transmitted power (kW)
- n: Speed of crank shaft (r/min)
- ℓ₁: Length of crank
- ℓ_2 : Length of lever on Cam Clutch
- 2.5: Factor

Overrunning

a) Calculate the torque on the Cam Clutch according to the following formula:

$$T = \frac{9550 \cdot kW}{N} \times SF$$

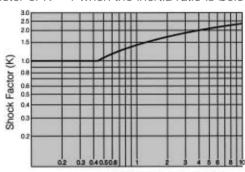
T: Loaded torque (N·m)

kW: Transmitted power (kW)

N: Speed of Cam Clutch shaft rotation (r/min)

SF: Service factor

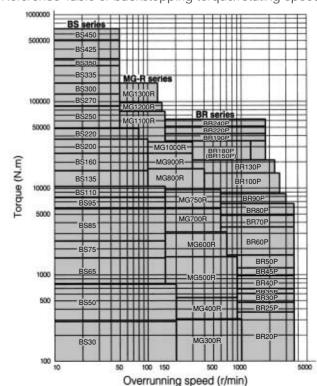
b) Select clutch by:


- a) Design torque requirement and service factor
- b) Maximum overrunning speed
- c) Bore and installation method

 If the SF is not known, use the peak torque
 with shock factor method.

Type of Load	SF
No shock load	1 – 1.5
Moderate shock load	1.5 – 2.5
Shock load	2 – 3
Heavy shock load	4 – 6

SF = Motor peak torque at staring x shock factor, K.


The shock factor K is obtained from the chart
below by calculating inertia ratio. Use a shock
factor of K = 1 when the inertia ratio is below 0.48.

Inertia Ratio: Load inertia on clutch shaft
Input inertia on clutch shaft

Backstopping

Reference Table of backstopping torque/rotating speeds

- a) Calculate the static torque reverse motion from the maximum load expected and multiply it by the service factor.
- b) Select the clutch by:
 - a) design torque requirement
 - b) max. overrunning speed
 - c) bore and installation method

Notes:

- The BS series is designed especially for mounting on the main drive shaft of conveyors, where the rotational speed is rather low, while the MG-R series is designed for highspeed backstop applications.
- 2. Do not exceed the maximum torque of the clutch. Also, please consult TSUBAKI for special applications.

For Belt Conveyors

Selection Procedure:

(1) Calculate the power to move an empty belt and idlers: (P1)

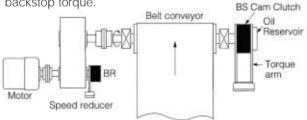
$$P_1 = 0.06 \times f \times W \times V \times \frac{\ell + \ell_0}{367} \text{ (kW)}$$

(2) Calculate the power to move a loaded belt horizontally: (P2)

$$P_2 = f \times Qt \times \frac{\ell + \ell_0}{367} \text{ (kW)}$$

(3) Calculate the power to move the load vertically: (P3)

$$P_3 = \frac{h \times Qt}{367} \text{ (kW)}$$


(4) Calculate the back stop power: (Pr)

$$Pr = P_3 - 0.7(P_1 + P_2)$$
 (kW)

(5) Calculate the back stop torque: (T)

$$T = \frac{9550 \times Pr}{N} \times SF (N \cdot m)$$

(6) Select the proper clutch which satisfies the calculated backstop torque.
BS Cam Clutch

Note:

- f = Friction coefficient of rollers
 - = 0.03 (normally used)
- W = Weight of moving parts of the conveyor in the unloaded condition (kg/m)

Use the values from the table below

Width of Belt (mm)	400	450	500	600	750	900
Estimated Weight: W	22.4	28	30	35.5	53	63
Width of Belt (mm)	1050	1200	1400	1600	1800	2000
Estimated Weight: W	80	90	112	125	150	160

V = Velocity of conveyor (m/min)

Qt = Max. possible load (tonnes/hour)

h = Total lift (m)

 ℓ = Horizontal distance between head pulley and tail pulley (m)

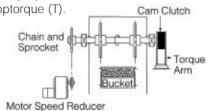
 ℓ_0 = Modification coefficient for ℓ

= 49 m (normally used)

N = Shaft speed (r/min) on which the clutch is mounted.

SF = Service factor

Select service factor from table below:


Delect Sel VI	Defect service ractor from table below.								
SF	Service condition								
1.5	Backstopping: Several times a day								
2.0	Backstopping: More than several times a day								

For Bucket Elevators

Selection Procedure:

(1)
$$T = \frac{9.8 \times (L + D) \times Qt \times D \times 1000}{120 \times V} \times SF (N \cdot m)$$

(2) Select the proper clutch which satisfies the calculated backstoptorque (T).

Note:

L = Total lift (m)

D = Pitch circle dia. of head sprocket (m)

Qt = Possible maximum load (tons/hour)

V = Velocity of conveyor (m/min)

SF = Service factor

Use the values from the table below.

SF	Service condition					
1.5 Several times a day						
2.0	2.0 More than several times a day					

Note:

For the conveyor types other than those in the above examples, calculate the backstop torque accordingly.

Always allow for the maximum possible load in your calculations, since backstopping often occurs when the conveyor is loaded above its normal loading capacity.

Motor Stall Torque Method

Another method commonly used to select the proper backstop clutch size for conveyors is to use the motor name plate ratings plus the motor's ability to produce excess torque. Depending on the motor size, it may develop over 300% of rated torque. After stalling an overloaded conveyor can overload the backstop. For proper selection of the backstop, all facets of the mechanical system should be considered to ensure that the backstop is not the weakest link in the conveyor drive. If the motor breakdown torque is not known, refer to the motor manufacturer.

Selection is based on the following formula:

Motor stall torque T =
$$\frac{\text{Motor name plate kW} \times 9550}{\text{Shaft speed N (r/min)}} \times \frac{\text{S}}{100} \leq \text{T}_{\text{max}}$$

S = Stall torque percentage

 T_{max} = Cam Clutch maximum torque at the 500,000 times point of the fatigue capacity graph (N·m)

 T_{max} = Catalogue rated torque x 1.8

Motor stall torque T = $\frac{\text{Motor name plate kW} \times 9550}{\text{Shaft speed N (r/min)}} \times \text{SF} \le \text{catalogue max torque}$

Depending on motor stall torque, apply the following service factors:

Stall torque	SF
Up to 180%	1.0
Up to 240%	1.3
Up to 300%	1.6

Select the Cam Clutch which satisfies the calculated torque T.

■ LUBRICATION AND MAINTENANCE

The clutch should receive proper care and lubrication to ensure maximum long-life performance. See the maintenance instructions below.

Recommended Oil

	Overrunning or Bac	ckstop Applications	
Oil Company	In low speed applications (below 1/3 of maximum overrun speed) or ambient temperature of –10°C to 30°C	In high-speed applications (near maximum overrun speed) or ambient temperature of 30°C to 50°C	Indexing Applications
Shell Oil	Dexron II Rimulla CT Oil 10W Shell Clavus Oil 17 Rotella S Oil 10W	Rimulla CT Oil 20W/20, 30 Rotella S Oil 20W/20, 30	Shell Clavus Oil 15
Mobil Oil	ATF 220 Delvac 1310 DTE Oil Light	Delvac 1330	Gargoyle Arctic Light
Nihon Oil	Pan Torque Dexron FBK Turbine Oil 32	Hispurt SS-20, 30	_
ВР	BP Energol THB32	_	_
ESSO	Telesso 32 Essolub D-3 10W ATF Dexron	Essolub D-3 30	_
Gulf	Harmony 32 Veritas SD10	Veritas SD30	_

Note: Do not use oil that contains EP additives.

Recommended Grease

Oil Company	200 MZ BB PB LD PG Series	BS Series	BS-EU Series		
	Multi purpose including Li (Consistency: NLGI No.2)	Multi purpose including Li (Consistency: NLGI No.1)			
Shell Oil	Alvania Grease No.2	Alvania Grease No.1	Alvania Grease RA		
Mobil Oil	Mobilux Grease No.2	Mobilux Grease No.1	Mobil temp SHC 100		
Nihon Oil	Multinoc Grease No.2	_	_		
Kyodo Yushi	_	Unilight SL No.1	_		
Gulf	_	Crown Grease No.1	_		
ESSO	Beacon 2	_	Beacon 325		

Note: Do not use grease that contains EP additives.

Maintenance Instructions

Series		Lubricant	Maintenance	
MZ, PG, BB, LD, MDEU		Pre-lubricated with grease	No lubrication maintenance required.	
200,PB		Grease lubrication	Change the grease and clean the inside of the Cam Clutch every six months.	
MG, MI-S, MI, PO, MR, PS		Oil lubrication	Add oil every 100 hours. Change the oil and clean the inside of the Cam Clutch every three months.	
MX		Oil lubrication	Change the oil and clean the inside of the Cam Clutch evey 300 hours.	
MG-R		Oil lubrication	Add oil every 300 hours. Change the oil and clean the inside of the Cam Clutch every 3 months.	
BS	30 to 135	Pre-lubricated with grease	No lubrication maintenance required.	
	160 to 350	Grease lubrication	Change the grease and clean the inside of the Cam Clutch once or twice a year.	
	425 to 450	Oil lubrication	Add oil every 3 months. Change the oil and clean the inside of the Cam Clutch every six months.	
BS-R	65R to 450R	Oil lubrication	Periodically check the oil level on the oil gauge. Change the oil once a year.	
BSEU		Pre-lubricated with grease	No lubrication maintenance required.	
		Oil bath system or self- lubrication system	Lubrication maintenance is necessary only once a year for normal use.	

■ LUBRICATION FOR THE BR SERIES

BR Series Cam Clutch needs periodic maintenance and lubrication to provide maximum performance throughout their service life. Lack of the prescribed maintenance and lubrication will shorten the Cam Clutch's service life and may result in unnecessary mechanical damage. BR series Cam clutch can be lubricated with oil or grease depending on the type of application.

1. Recommended Oils

Manufacturer	Туре
Nihon Sekiyu	FBK Turbine 32, Pantorque Dexron
Shell Oil	Rotera 10W, Rimura 10W, Turbo Oil T32
Mobil	DTE Oil Light, ATF 220
Esso	Teresso 32, Dexron II

2. Recommended Greases

Manufacturer	Туре
Nihon Sekiyu	Multi-Knock Grease 1
Shell Oil	Albania Grease 1
Mobil	Mobil Grease 77
Esso	Listan 1

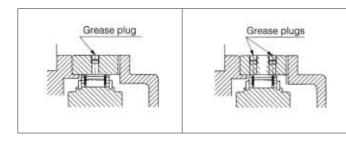
- 1. Do not use any EP additives in the oil or grease as they will shorten the Cam Clutch's service life.
- 2. The above oils and greases are recommended for operating environments ranging from -5°C to +40°C. Contact TSUBAKI for operating temperatures outside of this range.
- 3. Package type Cam Clutches are shipped pre-packed with grease.
- 4. Special Cam Clutch oil (1 liter can) and grease (500g can) are available from TSUBAKI.

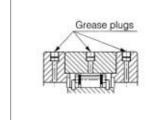
■ MAINTENANCE FOR THE BR SERIES

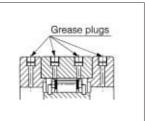
Open Type Cam Clutch

- 1. Follow the guidelines listed below for oil lubrication.
 - 1) Make sure there are no oil leaks at installation surfaces.
 - 2) Use the correct amount of oil, and when needed, replenish oil to the specified level only. Avoid over lubrication as it will cause the Cam Clutch to run hot.
 - 3) Change oil at least once every six months according to the following procedure:
 - (1) Dispose of old oil.
 - (2) Spin the Cam Clutch for 10 minutes in detergent oil in a free running condition (no clutch engagement).
 - (3) Remove the detergent oil, and fill with new oil to the specified level.
- 2. Follow the guidelines below for grease lubrication.
 - 1) Before running the Cam Clutch, remove the grease port plug and inject grease into the cam cage. The amount shown in the Grease Volume Table on the right.
 - 2) Run the Cam Clutch disengaged for 30 minutes with the grease port open. Excess grease around the clutches will flow out of the tapped holes.
 - 3) Wipe off the excess grease, and re-install the grease port plug.
 - 4) The Cam Clutch should be re-greased every three months according to the procedure outlined in steps 1 through 3 above.

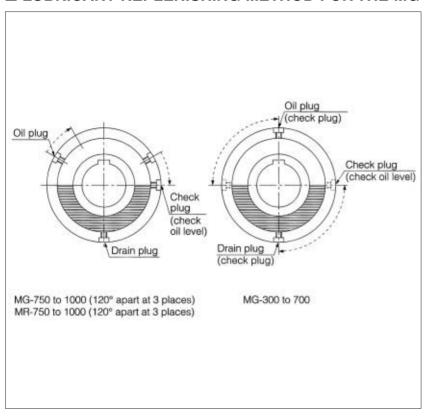
Package Type Cam Clutch

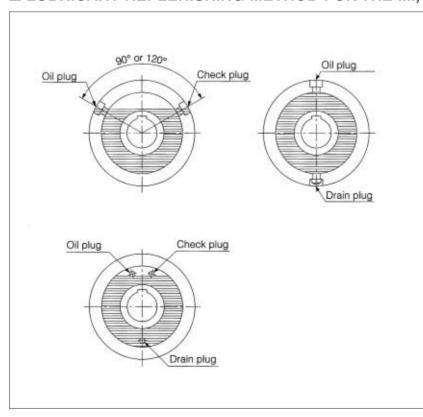

Package type Cam Clutches are shipped pre-greased at the factory and should be re-greased every three months after installation. Follow the procedure below.


- 1. Remove the grease port plugs at the bearing and cam cage.
- Inject equal amounts of grease into the cam cage and bearing. Refer to the Grease Volume Table for the correct amount.
- 3. Run the Cam Clutch disengaged for 30 minutes with the grease port plugs removed. Excess grease in the clutch area will flow out of the tapped holes. Be careful to avoid over greasing. Too much grease in the Cam Clutch will cause it to run hot, interfere with the clutch action, and may lead to mechanical damage.
- 4. Wipe off excess grease and re-install the grease port plugs.

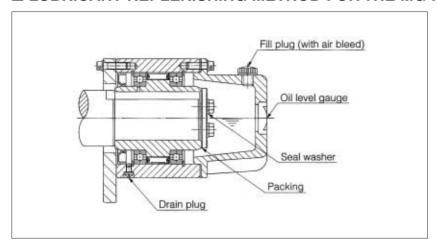

Grease Volume Table (g)

Model	Bearing	Cam Clutch
BR 20P	5	5
BR 25P	5	5
BR 30P	10	5
BR 35P	10	5
BR 40P	15	5
BR 45P	20	8
BR 50P	30	8
BR 60P	40	15
BR 70P	50	15

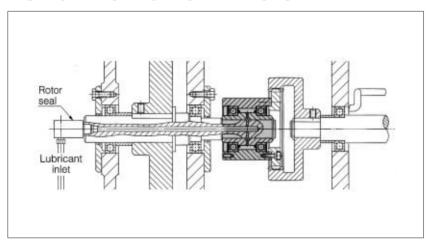

Model	Bearing	Cam Clutch
BR 80P	80	20
BR 90P	90	20
BR100P	160	35
BR130P	280	45
BR150P	460	70
BR180P	380	70
BR190P	500	110
BR220P	540	120
BR240P	750	130



■ LUBRICANT REPLENISHING METHOD FOR THE MG AND MR SERIES

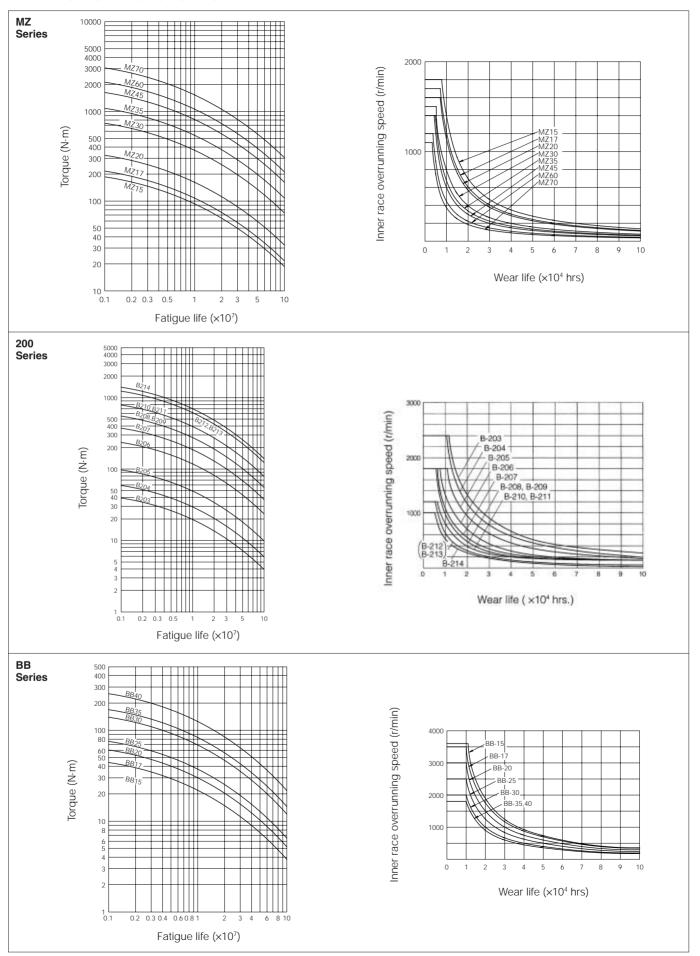

- As a general rule, the level of the lubricant should be equal to the height of the center of the shaft for overrunning or back-stopping applications.
- 2. On every series, on the outer race, there are two to four plugs.
- 3. On models that have four plugs, place them so that one is at the top, one is at each side, and one is at the bottom. Then remove the plugs from the top and the sides and insert oil into the top hole until it begins to spill out from the side holes.
- 4. On models that have three plug, place one plug at the bottom and have the other two near the top. Remove the two upper plugs and insert oil into either side. Check the level by slowly turning the clutch until one of the upper plugs reaches the height of the center of the shaft.
- 5. On models that have only two plugs, place one plug at the top position, remove its plug, and then insert oil. Then rotate the clutch 90°C to check that the oil is filled up to the level of the center of the shaft.

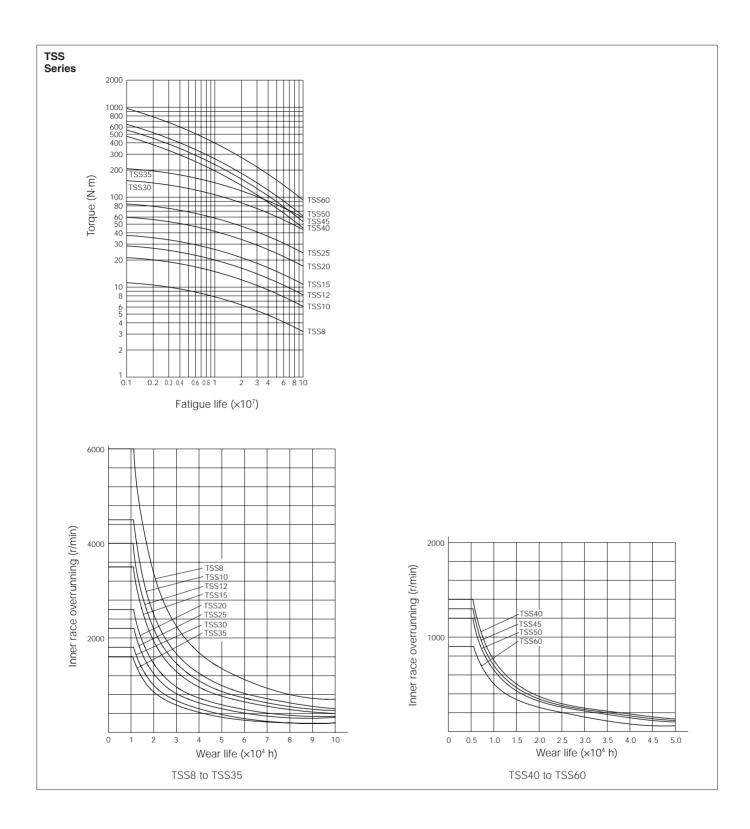
■ LUBRICANT REPLENISHING METHOD FOR THE MI, MI-S, PO, PS, AND MX SERIES

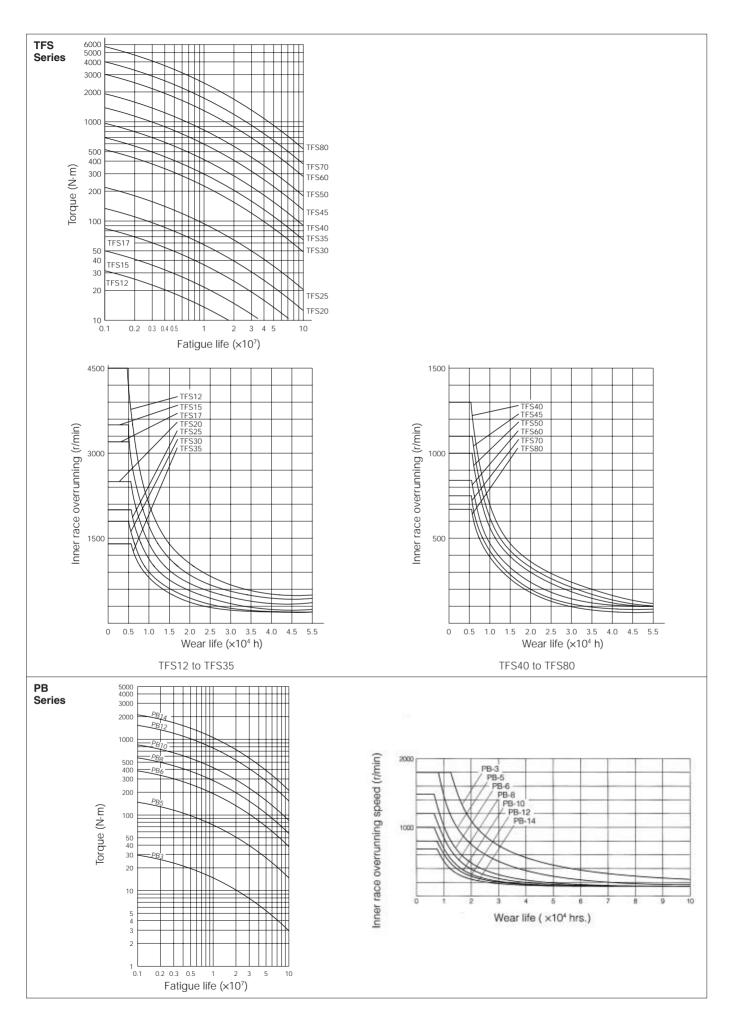

- 1. The level of the lubricant should be near the top of the inside of the Cam Clutch.
- 2. On the outside surface or on the side surface, there are oil plugs for oil filling and draining.
- 3. On models with three or four plugs on the outside surface, slightly turn the clutch and insert oil into one hole until oil begins to overflow out from one of its neighboring holes.
- On models with two plugs, insert the tip of the oil feeder into the plug and fill completely with oil until it overflows.
- 5. On models with plugs on the side surface, place the two plugs lined up next to each other at the top, remove their plugs, and insert oil into one of them until oil begins to spill out from the other one.

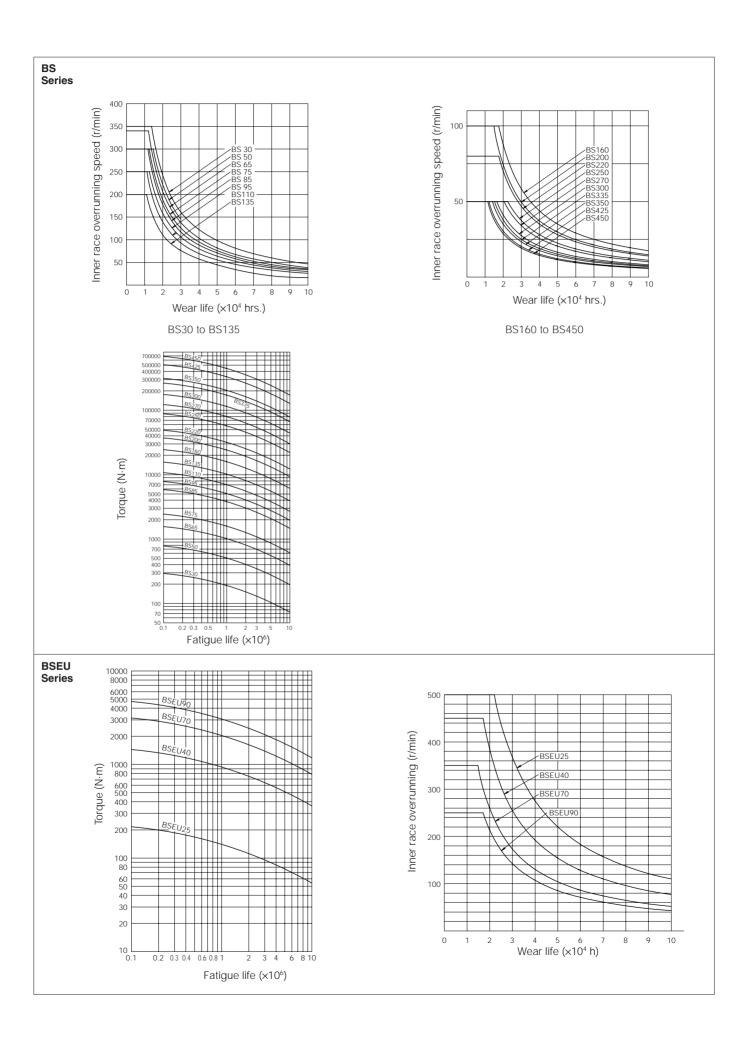
■ LUBRICANT REPLENISHING METHOD FOR THE MG-R SERIES

- 1. As a general rule, the level of the lubricant should be equal to the center of the shaft. Verify the level of the oil by the window-type oil level gauge built into the oil reserve tank.
- 2. On the outer race there are three or four oil plugs. Make one of these plugs the drain plug by installing the clutch so that the plug is at the very bottom. Since you insert oil through the oil plug on the oil reserve tank, install the oil reserve tank so that the oil plug is at the very top.

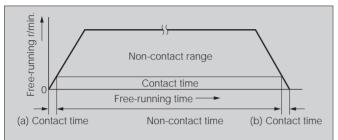

■ SPECIAL LUBRICATION METHODS




In some situations the Cam Clutch might be installed deep within your equipment making routine maintenance very difficult, or even impossible. The diagram on the left shows one such example.


In this example, a through hole is prepared through the shaft, and the oil is forced into the clutch through a rotor seal.

■ LIFE OF CAM CLUTCHES



■ LIFE OF BR SERIES CAM CLUTCH

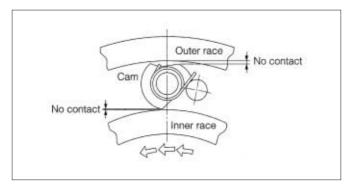
The service life of previous TSUBAKI Cam Clutch was determined as the frictional service life during freerunning (clutch disengaged) and the fatigue service life of the engaged clutch. However, with the new BR Series, freerunning frictional service life is not a factor because there is no mechanical contact when the clutch is disengaged. As a result, service life is determined solely by the fatigue life of the engaged clutch.

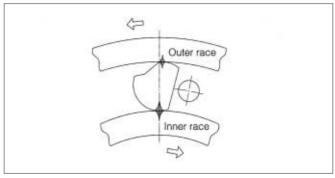
Friction in the clutch mechanism only occurs during a very short period of time denoted by "a" and "b". "a" is the time during which the cam is engaged until the acceleration of inner race causes it to disengage. "b" is the time during which the cam engages when the inner race decelerates.

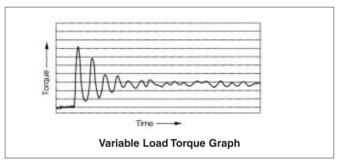
Fatigue Service Life

Compression stress is generated when the cam is engaged against the inner and outer races. While the points at which the engagement compression are applied are not specifically determined, they will generally remain constant. As a result, torque loads repeatedly applied to the clutch will eventually result in pitting of the contact surfaces. Refer to the fatigue service life graph to determine the service life of the Cam Clutch in relation to clutch engagement cycles and applied load.

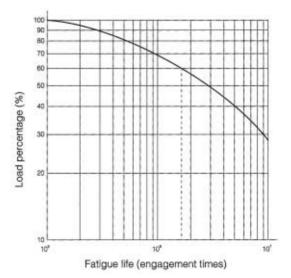
Note: In cases where the load applied to the Cam Clutch changes, or where vibrational loads are encountered, repeated torque loads can be applied during a single clutch engagement. The Variable Load Torque Graph shows the type of repetitive torque loads which can be applied to the Cam Clutch in these cases.

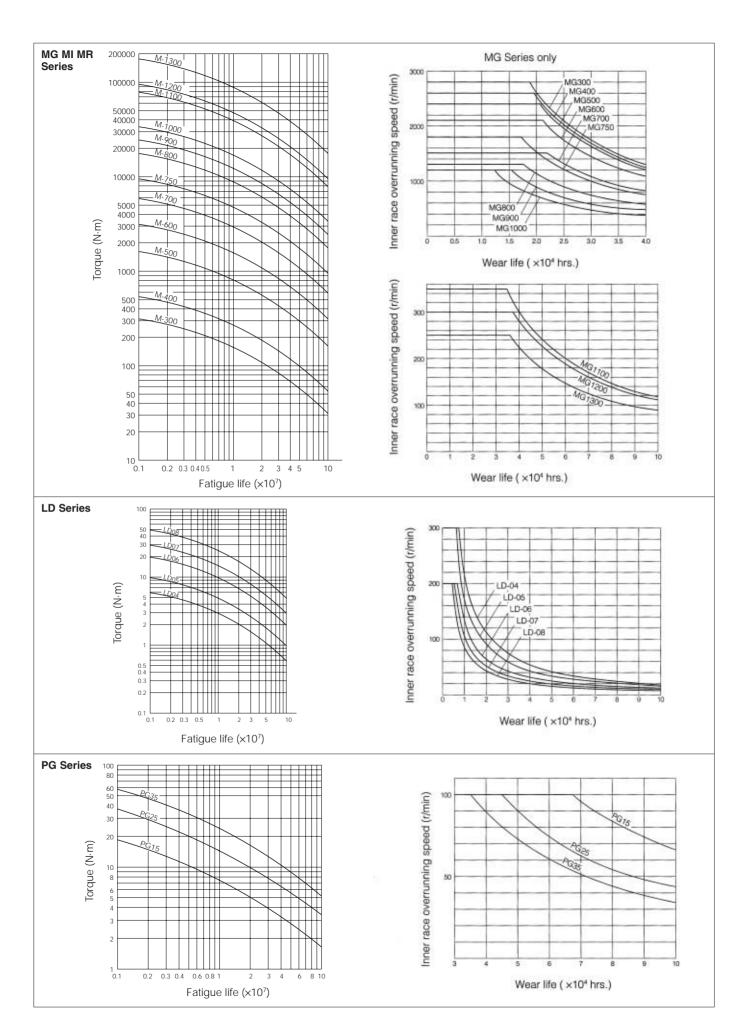

Repeated torque loads during a single clutch engagement can have the effect of increasing the overall torque load, and this must also be considered when determining Cam Clutch service life.

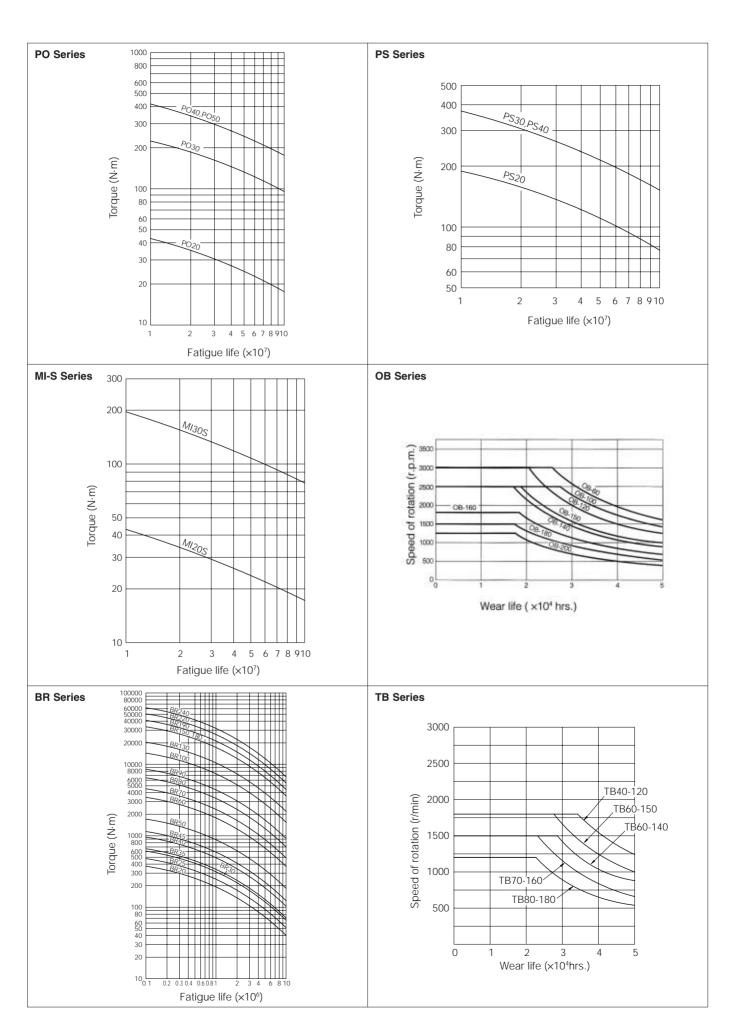

Fatigue Service Life Graph

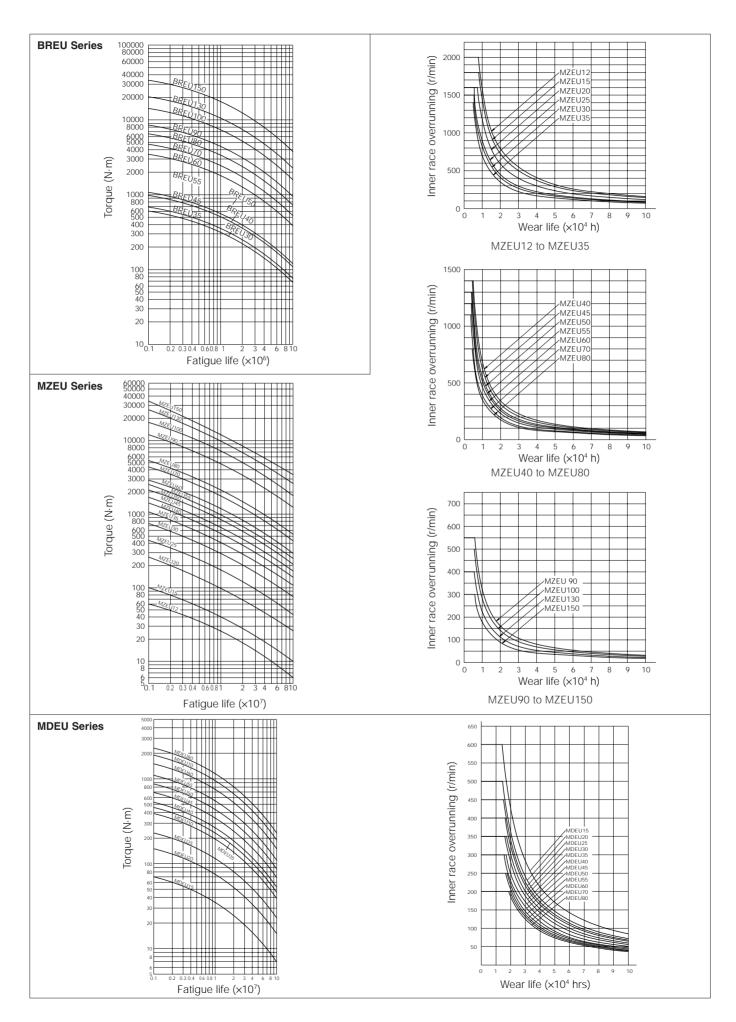

The Fatigue Service Life Graph at right pertains the BR series Cam Clutch. The horizontal axis denotes the clutch engagement cycles, and the vertical axis the applied torque percentage of the maximum rated load of the Cam Clutch. (100% refers to the maximum rated load). The service life of the Cam Clutch is determined by comparing the clutch engagement frequency to the load applied as a percentage of maximum load.

Example: Cam Clutch type	BR40
Maximum rated load	980 Nm
Applied torque	588 Nm
Torque percentage	60%
Clutch engagement cycles	approx. 1.600.000


In the above example, if a repetitive torque load were applied 10 times for each clutch engagement, the fatigue service life would be reduced to 160,000 cycles.







Fatigue Service Life Graph

USE CARE TO PREVENT INJURY.

COMPLY WITH THE FOLLOWING TO AVOID SERIOUS PERSONAL INJURY.

- 1. Guards must be provided on all power transmission and conveyor applications in accordance with provisions of ANSI/ASME B 15.1 1992 and ANSI/ASME B 20.1 1993 or other applicable standards. When revisions of these standards are published, the updated edition shall apply.
- Always lock out power switch before installing, removing, lubricating or servicing a system that uses Cam Clutch products.
- If the Cam Clutch is used for repeated starting and stopping, make sure the strength of the supports for the Cam Clutch are sufficient.
- The capacity of your Cam Clutch may be effected by the accuracy of its set up, the amount of pressure exerted on it, wear on other parts in your system, or wear life of the Cam Clutch itself. Check the Cam Clutch at regular intervals and take any necessary safety precautions.
- When connecting or disconnecting Cam Clutch products, eye protection is required. Wear safety glasses, protective clothing, gloves and safety shoes.

TSUBAKI EMERSON CO.

1-1. Kotari-Kuresumi, Nagaokakyo, Phone : (075) 957-3131 Kyoto 617-0833, Japan Facsimile: (075) 957-3122 Internet:

http://www.tsubaki-emerson.co.ip/

Group Companies:

U.S. TSUBAKI, INC. 301 E. Marquardt Drive

Wheeling, IL 60090 USA

: 847-459-9500 Phone Facsimile: 847-459-9515

TSUBAKI of CANADA LIMITED

1630 Drew Road

Mississauga, Ontario, L5S 1J6

Canada Phone

: 905-676-0400 Facsimile: 905-676-0904

TSUBAKI AUSTRALIA PTY. LTD.

Unit E. 95-101 Silverwater Road Silverwater, N.S.W. 2128

Australia

02-9648-5269 Phone Facsimile: 02-9648-3115

TSUBAKIMOTO (THAILAND) CO., LTD.

Room No. C, T.W.Y. Office Center, 10th Floor, Serm-Mit Tower. 159 Soi Asoke, Sukhumvit Road, North-Klongtoey Wattana, Bangkok 10110

Thailand

Phone : 66-2-261-9991/2 Facsimile: 66-2-261-9993

TSUBAKIMOTO SINGAPORE PTE. LTD.

25 Gul Lane Jurong

Singapore 629419 Phone : 68610422/3/4 Facsimile : 68617035

TAIWAN TSUBAKIMOTO CO.

No. 7 Feng Sun Keng Kuei Shan-Hsiang, Taoyuan-Hsien Taiwan R.O.C.

: 03-3293827/8/9 Phone Facsimile : 03-3293065

TSUBAKI EMERSON CO.

TAIWAN BRANCH

5th F1., No. 2, Jen Ai Road, Sec.4, Taipei

Taiwan R.O.C.

: 02-2325-9555 Phone Facsimile: 02-2784-0022

TSUBAKI EMERSON MACHINERY (SHANGHAI)

No. 4 leased factory building, No. 1588 Gaotai Rd.,

Shanghai Jiading Industrial Zone,

Shanghai

Phone : 021-6916-9305/6 Facsimile: 021-6916-9308

TSUBAKIMOTO EUROPE B.V.

Belder 1, 4704 RK Roosendaal The Netherlands

: 0165-594800 Phone Facsimile: 0165-549450

TSUBAKIMOTO U.K. LTD.

Osier Drive. Sherwood Park Annesley, Nottingham, NG15 ODX

United Kingdom Phone

: 01623-688788 Facsimile: 01623-688789

TSUBAKIMOTO CHAIN CO.

Shanghai Representative Office 603 Unicom International Tower 547 Tianmu Xi Road, Shanghai,

China 200070

Phone : 021-6317-1662 Facsimile : 021-6317-0794

Distributed by: